【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.
【答案】
(1)
解:PM=PN,PM⊥PN,理由如下:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM= BD,PN= AE,
∴PM=PM,
∵PM∥BD,PN∥AE,AE⊥BD,
∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN;
(2)
解:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∴△ACE≌△BCD.
∴AE=BD,∠CAE=∠CBD.
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.
∵点P、M、N分别为AD、AB、DE的中点,
∴PM= BD,PM∥BD;
PN= AE,PN∥AE.
∴PM=PN.
∴∠MGE+∠BHA=180°.
∴∠MGE=90°.
∴∠MPN=90°.
∴PM⊥PN.
(3)
解:PM=kPN
∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴ =k.
∴△BCD∽△ACE.
∴BD=kAE.
∵点P、M、N分别为AD、AB、DE的中点,
∴PM= BD,PN= AE.
∴PM=kPN.
【解析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM= BD,PN= AE,进而可证明PM=kPN.
科目:初中数学 来源: 题型:
【题目】每年5月的第二周为:“职业教育活动周”,今年我市展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).
(1)补全条形统计图和扇形统计图;
(2)若该校共有3000名学生,请估计该校对“工艺设计”最感兴趣的学生有多少人?
(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,AB∥CD,分别探究下列四个图形(图①、②、③、④)中∠APC和∠PAB、∠PCD的数量关系,用等式表示出来.
(1)设∠APC=m,∠PAB=n,∠PCD=t.
请用含m,n,t的等式表示四个图形中相应的∠APC和∠PAB、∠PCD的数量关系.(直接写出结果)
图①: ;
图②: ;
图③: ;
图④: .
(2)在(1)中的4个结论中选出一个你喜欢的结论加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.
(1)点A的坐标:_____;点B的坐标:_____;
(2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2016年底,已知“摩拜单车”投放数量有50万辆,“ofo共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,“ofo共享单车”注册用户量比“摩拜单车”的注册用户量多210万人,据统计使用一辆“ofo共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2016年“ofo共享单车”和“摩拜单车”的注册用户量各多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是【 】
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作 交AB于点E,以点B为圆心,BC的长为半径作 交AB于点D,则阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点D为△ABC边BC的延长线上一点.
(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;
(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.
求证: ;
(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):
方案1:所有评委所给分的平均数,
方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l平均数.
方案3:所有评委所给分的中位效.
方案4:所有评委所给分的众数.
为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:
(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com