精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,AB∥CD,分别探究下列四个图形(图①、②、③、④)中∠APC和∠PAB、∠PCD的数量关系,用等式表示出来.

(1)设∠APC=m,∠PAB=n,∠PCD=t.

请用含m,n,t的等式表示四个图形中相应的∠APC和∠PAB、∠PCD的数量关系.(直接写出结果)

图①:

图②:

图③:

图④: .

(2)在(1)中的4个结论中选出一个你喜欢的结论加以证明.

【答案】(1)图①:m=n+t;图②:m+n+t=360°;图③:m+n=t;图④:m﹣t+n=180°(2)详见解析.

【解析】(1)依据∠APC=m,PAB=n,PCD=t,写出∠APC和∠PAB、PCD的数量关系即可

(2)图①中,作PEAB;图②中,作PFAB;图③中运用三角形外角性质;图④中,作PHAB,分根据平行线的性质进行推导计算即可得出结论.

若选图①,过P作PE∥AB,则PE∥CD,

∴∠A=∠APE=n,∠C=∠CPE=t,

∴∠APC=∠APE+∠CPE=∠A+∠C,即m=n+t;

其他参考答案

若选图②,

过P作PF∥AB,则PF∥CD,

∴∠A+∠APF=180°,∠C+∠CPF=180°,

∴∠A+∠APF+∠C+∠CPF=180°×2=360°,

即∠A+∠APC+∠C=360°,∴m+n+t=360°;

若选图③,

∵AB∥CD,∴∠PGB=∠C,

又∵∠PGB=∠A+∠APC,

∴∠C=∠A+∠APC,即m+n=t;

若选图④,

过P作PH∥AB,则PH∥CD,

∴∠A+∠APH=180°,∠C=∠CPH=t,

又∵∠APH=∠APC﹣∠CPH=m﹣t,

∴n+m﹣t=180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDCEBE的交点为E,现作如下操作:

第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……

n次操作,分别作∠ABEn1和∠DCEn1的平分线,交点为En.

(1)如图①,求证:∠EBC

(2)如图②,求证:∠E1E

(3)猜想:若∠Enb°,求∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).

(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系上有点A(1.O),点A第一次跳动至点A1(-1,1).第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是( )

A. (50,49) B. (51, 49) C. (50, 50) D. (51, 50)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图,直线AB,CD相交于点O,OE⊥CD于点O,OD平分∠BOF,∠BOE=50

求∠AOC,∠AOF,∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也逐步增大.某商场从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7 500元购进A型空气净化器和用6 000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商场销售B型空气净化器的利润为3200元,请问该商场应将B型空气净化器的售价定为多少元?
(3)已知A型空气净化器净化能力为340m3/h,B型空气净化器净化能力为240m3/h.某公司室内办公场地总面积为600m2 , 室内墙高3.5m.受二胎政策影响,近期孕妇数量激增,为保证胎儿健康成长,该公司计划购买15台空气净化器净化空气,每天花费30分钟将室内空气净化一新,若不考虑空气对流等因素,该公司至少要购买A型空气净化器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.

(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,BD平分∠ABCCD平分∠ACB,过点DEFBC,与ABAC分别相交于EF,若已知AB=9AC=7,求AEF的周长.

查看答案和解析>>

同步练习册答案