精英家教网 > 初中数学 > 题目详情

【题目】如图,直线Ly=x+2x轴、y轴分别交于AB两点,在y轴上有一点N04),动点MA点以每秒1个单位的速度匀速沿x轴向左移动.

1)点A的坐标:_____;点B的坐标:_____

2)求NOM的面积SM的移动时间t之间的函数关系式;

3)在y轴右边,当t为何值时,NOMAOB,求出此时点M的坐标;

4)在(3)的条件下,若点G是线段ON上一点,连结MGMGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.

【答案】140),(02);(2;(3M20);(4G0 .

【解析】试题分析:(1)在中,令别令y=0x=0,则可求得AB的坐标;

2)利用t可表示出OM,则可表示出S,注意分My轴右侧和左侧两种情况;

3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;

4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到,则可求得OG的长,可求得G点坐标.

试题解析:解:1)在中,令y=0x=4,令x=0y=2A40),B02);

2)由题题意可知AM=t

当点My轴右边,即0t≤4OM=OAAM=4﹣t

N04),ON=4S=OMON=×4×4t=82t

当点My轴左边,即t4时,则OM=AMOA=t﹣4

S=×4×t4=2t8

综上所述:

3∵△NOM≌△AOBMO=OB=2M20);

4OM=2ON=4MN==

∵△MGN沿MG折叠,∴∠NMG=OMG ,且NG=ONOG

,解得OG=G0 ).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于实数我们定义一种新运算(其中均为非零常数).等式右边是通常的四则运算.由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对.

(1)若,则 .

(2)已知,若正格线性数,求满足不等式组的所有的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系上有点A(1.O),点A第一次跳动至点A1(-1,1).第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是( )

A. (50,49) B. (51, 49) C. (50, 50) D. (51, 50)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也逐步增大.某商场从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7 500元购进A型空气净化器和用6 000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商场销售B型空气净化器的利润为3200元,请问该商场应将B型空气净化器的售价定为多少元?
(3)已知A型空气净化器净化能力为340m3/h,B型空气净化器净化能力为240m3/h.某公司室内办公场地总面积为600m2 , 室内墙高3.5m.受二胎政策影响,近期孕妇数量激增,为保证胎儿健康成长,该公司计划购买15台空气净化器净化空气,每天花费30分钟将室内空气净化一新,若不考虑空气对流等因素,该公司至少要购买A型空气净化器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本学期开学前夕,某文具店用4000元购进若干书包,很快售完,接着又用4500元购进第二批书包,已知第二批所购进书包的只数是第一批所购进书包的只数的1.5倍,且每只书包的进价比第一批的进价少5元,求第一批书包每只的进价是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.

(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=8AD=4.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当PQ两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当APQ为直角三角形时,则相应的x的值或取值范围是_______________

 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】首条贯通丝绸之路经济带的高铁线﹣宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与一带一路沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示yx之间的函数关系,根据图象进行一下探究:

【信息读取】

1)西宁到西安两地相距 千米,两车出发后 小时相遇;

2)普通列车到达终点共需 小时,普通列车的速度是 千米/小时.

【解决问题】

3)求动车的速度;

4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?

查看答案和解析>>

同步练习册答案