精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE4,过点EEFBC,分别交BDCD于点GF两点,若MN分别是DGCE的中点,则MN的长是______

【答案】

【解析】

作辅助线,构建矩形MHPK和直角三角形NMH,利用平行线分线段成比例定理或中位线定理得:MKFK1NP3PF2,利用勾股定理可得MN的长.

MMKCDK,过NNPCDP,过MMHPNH

MKEFNP

∵∠MKP=∠MHP=∠HPK90°

∴四边形MHPK是矩形,

MKPHMHKP

NPEFNEC的中点,

PFFCBE2NPEF3

同理得:FKDK1

∵四边形ABCD为正方形,

∴∠BDC45°

∴△MKD是等腰直角三角形,

MKDK1NHNPHP312

MH2+13

RtMNH中,由勾股定理得:MN

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列各点中,在函数 y2x5 图象上的点是( )

A. 00B. ,-4C. 3,-1D. (-50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点OAB上的一点,∠COE90°OF平分∠AOE

1)如图1,当点CEF在直线AB的同一侧时,若∠AOC40°,求∠BOE和∠COF的度数;

2)在(1)的条件下,∠BOE和∠COF有什么数量关系?请直接写出结论,不必说明理由;

3)如图2,当点CEF分别在直线AB的两侧时,若∠AOCβ,那么(2)中∠BOE和∠COF的数量关系是否仍然成立?请写出结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCADBC,∠B90°,AGCDBC于点G,点EF分别为AGCD的中点,连接DEFG

(1)求证:四边形DEGF是平行四边形;

(2)当点GBC的中点时,求证:四边形DEGF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:

学校这次调查共抽取了 名学生;

的值并补全条形统计图;

在扇形统计图中,围棋所在扇形的圆心角度数为

设该校共有学生名,请你估计该校有多少名学生喜欢足球.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF.(1.414,CF结果精确到米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某销售商计划购进甲、乙两种商品共件进行销售.已知甲种商品每件进价元,乙种商品每件进价元;通过市场考察,销售商决定甲种商品以每件元的价格出售,乙种商品以每件元的价格出售.设销售商购进的甲种商品有件,销售完甲、乙两种商品后获得的总利润为

的函数关系式;

如果销售商购进的甲种商品的数量不少于乙种商品数量的倍,请求出获利最大的进货方案,所获得的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )

A.22B.19C.16D.13

查看答案和解析>>

同步练习册答案