精英家教网 > 初中数学 > 题目详情

【题目】如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是(  )

A.第4张
B.第5张
C.第6张
D.第7张

【答案】B
【解析】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
, 解得x=3,
所以另一段长为18﹣3=15,
因为15÷3=5,所以是第5张.
故选:B.
【考点精析】利用相似三角形的应用对题目进行判断即可得到答案,需要熟知测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个小立方块,每一个面上分别写着数字1、2、3、4、5、6,有三个人分别从不同角度观察的结果如图所示,问这个小立方块相对的两个面上的数字分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1 , 画出△A1B1C1并直接写出点C1的坐标为多少?
(2)以原点O为位似中心,在第四象限画一个△A2B2C2 , 使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,如果AB=30cm,BC=24cm,AC=27cm,AE=EF=FB,EG∥DF∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形周长之和为( )

A.70
B.75
C.81
D.80

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大小为4×4的正方形网格中,是相似三角形的是(  )
A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题

(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范围是;药物燃烧完后,y与x的函数关系式为
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案