精英家教网 > 初中数学 > 题目详情

【题目】已知点P(1,3),将线段OP绕原点O按顺时针方向旋转90°得到线段OP,则点P的坐标是(

A. (﹣1,3) B. (1,﹣3) C. (3,﹣1) D. (3,1)

【答案】C

【解析】

先根据旋转的性质,得到OP=OP',POP'=90°,再过PPDx轴于D,过P'P'Ex轴于E,得到POD≌△OP'E(AAS),即可得到P'E=OD=1,OE=PD=3,进而得出P'(3,-1).

解:如图所示,由旋转可得OP=OP',POP'=90°,

PPDx轴于D,过P'P'Ex轴于E,则

PDO=OEP'=90°,P+POD=P'OE+POD=90°,

∴∠P=P'OE,

PODOP'E中,

,

∴△POD≌△OP'E(AAS),

P'E=OD=1,OE=PD=3,

P'(3,-1),

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲口袋里装有2个相同的小球,它们分别写有数字12;乙口袋里装有3个相同的小球,它们分别写有数字3,4,5;丙口袋里有2个相同的小球,它们分别写有数字6,7,从三个口袋中各随机地取出1个小球,按要求解答下列问题:

(1)画出树形图”;

(2)取出的3个小球上只有1个偶数数字的概率是多少?

(3)取出的3个小球上全是奇数数字的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).

(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+ODA= °.

(2)若四边形OBCD为平行四边形.

①当圆心O在∠BAD的内部时,求∠OBA+ODA的度数;

②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.

(1)写出点B坐标;判断△OBP的形状;

(2)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;

i)若抛物线向下平移m个单位长度,当SPCD= SPOC时,求平移后的抛物线的顶点坐标;

ii)在平移过程中,试探究SPCD和SPOD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点轴的负半轴上,直线轴于点边交轴于点

1)如图1,求直线的解析式;

2)如图2,连接,动点从点出发,沿线段方向以1个单位/秒的速度向终点匀速运动,设的面积为),点的运动时间为秒,求之间的函数关系式,并直接写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为(  )

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1cm、3cm、5cm、7cm、9cm的五条线段中,任选三条可以构成三角形的概率是________%.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D,E,F分别是ABC各边的中点,下列说法中错误的是( )

A. ABCDEF是相似形 B. ABCAEF是位似图形 C. EFAD互相平分 D. AD平分∠BAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;

(2)求抛物线的顶点坐标和对称轴;

(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分).

查看答案和解析>>

同步练习册答案