【题目】如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).
(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °.
(2)若四边形OBCD为平行四边形.
①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;
②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.
【答案】(1)60°;(2)①60°;②∠OBA=∠ODA+60°.
【解析】
试题(1)连接BD,首先圆周角定理,求出∠BAD的度数是多少;然后根据三角形的内角和定理,求出∠0BD、∠ODB的度数和是多少;最后在△ABD中,用180°减去∠BAD、∠0BD、∠ODB的度数和,求出∠OBA+∠ODA等于多少即可.
(2)①首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.
②首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.
试题解析:解:(1)如图1,连接BD,
∵∠BOD=120°,
∴∠BAD=120°÷2=60°,
∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,
∴∠OBA+∠ODA=180°﹣(∠0BD+∠ODB)﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°.
故答案为:60;
(2)①如图2,
∵四边形OBCD为平行四边形,
∴∠BOD=∠BCD,∠OBC=∠ODC,
又∵∠BAD+∠BCD=180°,∠BAD=∠B0D,
∴∠B0D+∠B0D=180°,
∴∠B0D=120°,∠BAD=120°÷2=60°,
∴∠OBC=∠ODC=180°﹣120°=60°,
又∵∠ABC+∠ADC=180°,
∴∠OBA+∠ODA=180°﹣(∠OBC+∠ODC)=180°﹣(60°+60°)=180°﹣120°=60°;
②如图3,
∵四边形OBCD为平行四边形,
∴∠BOD=∠BCD,∠OBC=∠ODC,
又∵∠BAD+∠BCD=180°,∠BAD=∠B0D,
∴∠B0D+∠B0D=180°,
∴∠B0D=120°,∠BAD=120°÷2=60°,
∴∠OAB=∠OAD+∠BAD=∠OAD+60°,
∵OA=OD,OA=OB,
∴∠OAD=∠ODA,∠OAB=∠OBA,
∴∠OBA=∠ODA+60°.
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,,点是边上的动点(含端点,),连结,以所在直线为对称轴作点的对称点,连结,,,,点,,分别是线段,,的中点,连结,.
(1)求证:四边形是菱形;
(2)若四边形的面积为,求的长;
(3)以其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
(1)求证:四边形AGDH为菱形;
(2)若EF=y,求y关于x的函数关系式;
(3)连结OF,CG.
①若△AOF为等腰三角形,求⊙O的面积;
②若BC=3,则CG+9=______.(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是( )
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c过A、B、C三点.
(1)求抛物线函数关系式;
(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;
(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知经过原点的抛物线与轴的另一个交点为,现将抛物线向右平移个单位长度,所得抛物线与轴交于,与原抛物线交于点,设的面积为,则用表示=__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(1,3),将线段OP绕原点O按顺时针方向旋转90°得到线段OP′,则点P′的坐标是( )
A. (﹣1,3) B. (1,﹣3) C. (3,﹣1) D. (3,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE=时,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com