【题目】如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
(1)求证:四边形AGDH为菱形;
(2)若EF=y,求y关于x的函数关系式;
(3)连结OF,CG.
①若△AOF为等腰三角形,求⊙O的面积;
②若BC=3,则CG+9=______.(直接写出答案).
【答案】(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
【解析】
(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
(2)只要证明△AEF∽△ACB,可得解决问题;
(3)①分三种情形分别求解即可解决问题;
②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
(1)证明:∵GH垂直平分线段AD,
∴HA=HD,GA=GD,
∵AB是直径,AB⊥GH,
∴EG=EH,
∴DG=DH,
∴AG=DG=DH=AH,
∴四边形AGDH是菱形.
(2)解:∵AB是直径,
∴∠ACB=90°,
∵AE⊥EF,
∴∠AEF=∠ACB=90°,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴,
∴,
∴y=x2(x>0).
(3)①解:如图1中,连接DF.
∵GH垂直平分线段AD,
∴FA=FD,
∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
∴AB=,
∴⊙O的面积为π.
如图2中,当AF=AO时,
∵AB==,
∴OA=,
∵AF==,
∴=,
解得x=4(负根已经舍弃),
∴AB=,
∴⊙O的面积为8π.
如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,
∵△ACE∽△ABC,
∴AC2=AEAB,
∴16=x,
解得x2=2﹣2(负根已经舍弃),
∴AB2=16+4x2=8+8,
∴⊙O的面积=πAB2=(2+2)π
综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
②如图3中,连接CG.
∵AC=4,BC=3,∠ACB=90°,
∴AB=5,
∴OH=OA=,
∴AE=,
∴OE=OA﹣AE=1,
∴EG=EH==,
∵EF=x2=,
∴FG=﹣,AF==,AH==,
∵∠CFG=∠AFH,∠FCG=∠AHF,
∴△CFG∽△HFA,
∴,
,
∴CG=﹣,
∴CG+9=4.
故答案为4.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接PA,PB,OB,已知S△AOB=S△PAB.
(1)求k的值和点B的坐标.
(2)求直线BP的解析式.
(3)直接写出在第一象限内,使反比例函数大于一次函数的x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲口袋里装有2个相同的小球,它们分别写有数字1和2;乙口袋里装有3个相同的小球,它们分别写有数字3,4,5;丙口袋里有2个相同的小球,它们分别写有数字6,7,从三个口袋中各随机地取出1个小球,按要求解答下列问题:
(1)画出“树形图”;
(2)取出的3个小球上只有1个偶数数字的概率是多少?
(3)取出的3个小球上全是奇数数字的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ADE经顺时针旋转后与△ABF重合.
(1)旋转中心是点________,旋转了________度.
(2)如果连接EF,那么△AEF是怎样的三角形?为什么?
(3)请用尺规作图画出△AEF的外接圆,标明圆心M的位置,量出半径的长度为________,并判断点C与⊙M的位置关系为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程:
(1)(x+8)2=36;
(2)x(5x+4)-(4+5x)=0;
(3)x2+3=3(x+1);
(4)2x2-x-1=0(用配方法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).
(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °.
(2)若四边形OBCD为平行四边形.
①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;
②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com