精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,ADBCD,AE平分∠BAC.

(1)若∠B=70°,C=40°,求∠DAE的度数.

(2)若∠B﹣C=30°,则∠DAE=   

(3)若∠B﹣C=α(B>C),求∠DAE的度数(用含α的代数式表示)

【答案】(1)15°;(2)15°;(3)α;

【解析】

(1)根据角平分线的定义和互余进行计算;
(2)根据三角形内角和定理和角平分线定义得出∠DAE的度数等于∠B与∠C差的一半解答即可;
(3)根据(2)中所得解答即可.

解:∵ADBCD,

∴∠ADC=90°,

AE平分∠BAC,

∴∠EAC=BAC,

而∠BAC=180°﹣B﹣C,

∴∠EAC=90°﹣B﹣C,

∵∠DAC=90°﹣C,

∴∠DAE=DAC﹣EAC=90°﹣C﹣[90°﹣B﹣C]

=B﹣C),

(1)若∠B=70°,C=40°,则∠DAE=(70°﹣40°)=15°;

(2)若∠B﹣C=30°,则∠DAE=×30°=15°;

(3)若∠B﹣C=α(B>C),则∠DAE=α;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列各题
(1)解方程: =1﹣
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校课外兴趣小组在本校学生中开展“感动中国2016年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:

类别

A

B

C

D

频数

30

40

24

b

频率

a

0.4

0.24

0.06


(1)表中的a= , b=
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为D的人数约为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为三角形数,而把1,4,9,16…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等腰直角三角形,点D是边BC上一动点,以AD为直角边作等腰直角△ADE,分别过A、E点向BC边作垂线,垂足分别为F、G.连接BE.

(1)证明:BG=FD;

(2)求∠ABE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+5x+3﹣3m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为负整数,求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,RtABC中,∠ACB=90°,DAB中点,DEDF分别交ACE,交BCF,且DEDF

(1)如果CA=CB,求证:AE2+BF2=EF2

(2)如图2,如果CACB,(1)中结论还能成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初中生在数学运算中使用计算器的现象越来越普遍,某校一兴趣小组随机抽查了本校若干名学生使用计算器的情况.以下是根据抽查结果绘制出的不完整的条形统计图和扇形统计图:
请根据上述统计图提供的信息,完成下列问题:
(1)这次抽查的样本容量是
(2)请补全上述条形统计图和扇形统计图;
(3)若从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是多少?

查看答案和解析>>

同步练习册答案