【题目】如图,平面直角坐标系中,函数y=﹣3x+b的图象与y轴相交于点B,与函数y=﹣x的图象相交于点A,且OB=5.
(1)求点A的坐标;
(2)求函数y=﹣3x+b、y=﹣x的图象与x轴所围成的三角形的面积.
【答案】(1)(0,﹣3)(2)
【解析】
(1)把B(0,﹣5)代入y=﹣3x+b,可得函数关系式为y=﹣3x﹣5,再根据方程组即可得到点A的坐标为(﹣3,4);
(2)设直线AB与y轴交于点C,则CO,所围成的三角形即为△ACO,过A作AE⊥x轴于E,即可利用三角形面积公式得出结论.
(1)由OB=5可得:B(0,﹣5),
把(0,﹣5)代入y=﹣3x+b,可得:b=﹣5,
∴函数关系式为y=﹣3x﹣5,
解方程组,可得,∴点A的坐标为(﹣3,4);
(2)设直线AB与y轴交于点C,在y=﹣3x﹣5,令y=0,得:﹣3x﹣5=0,解得:x=,则点C的坐标为(,0),CO,
所围成的三角形即为△ACO,
如图,过A作AE⊥x轴于E.
由A(﹣3,4)可得AE=4,∴S△ACOAE×CO4.
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点EF作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某射箭队准备从王方、李明二人中选拔1人参加射箭比赛,在选拔赛中,两人各射箭10次的成绩(单位:环数)如下:
次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
王方 | 7 | 10 | 9 | 8 | 6 | 9 | 9 | 7 | 10 | 10 |
李明 | 8 | 9 | 8 | 9 | 8 | 8 | 9 | 8 | 10 | 8 |
(1)根据以上数据,将下面两个表格补充完整:
王方10次射箭得分情况
环数 | 6 | 7 | 8 | 9 | 10 | |
频数 | ______ | ______ | ______ | ______ | ______ | |
频率 | ______ | ______ | ______ | ______ | ______ |
李明10次射箭得分情况
环数 | 6 | 7 | 8 | 9 | 10 |
频数 | ______ | ______ | ______ | ______ | ______ |
频率 | ______ | ______ | ______ | ______ | ______ |
(2)分别求出两人10次射箭得分的平均数;
(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们学习了勾股定理后,都知道“勾三、股四、弦五”.
观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.
(1)请你根据上述的规律写出下一组勾股数:________.
(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式;
(3)y轴上是否存在一点P,使得S△PAB=,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点B,D分别向线段AE作垂线段BQ和DF,点Q和F是垂足,连结AB,DE,BD,BD交AE于点C,且AB=DE,AF=EQ.
(1)求证:△ABQ≌△EDF;
(2)求证:C是BD的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AC为直径,弧AE=弧BD,BE⊥DC交DC的延长线于点E.
(1)求证:∠1=∠BCE;
(2)求证:BE是⊙O的切线;
(3)若EC=1,CD=3,求cos∠DBA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于任何数a,符号[a]表示不大于a的最大整数.
例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.
(1)[﹣]= ;
(2)如果[a]=3,那么a的取值范围是 ;
(3)如果[]=﹣3,求满足条件的所有整数x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com