精英家教网 > 初中数学 > 题目详情

【题目】如图,过点BD分别向线段AE作垂线段BQDF,点QF是垂足,连结ABDEBDBDAE于点C,且ABDEAFEQ

(1)求证:ABQEDF

(2)求证:CBD的中点.

【答案】1)见解析;(2)见解析

【解析】

1)根据AFEQ推出AQEF,则可证明△ABQ≌△EDF(HL)

(2)由(1)得BQFD,则根据垂直与对顶角,即可证明△BQC≌△DFC(AAS),即可推出CBD的中点.

解: (1)AFEQ,∴AQEF

RtABQRtEDF中,

∴△ABQ≌△EDF(HL)

(2)∵△ABQ≌△EDF

BQFD

在△BQC与△DFC中,

∴△BQC≌△DFC(AAS)

BCCD

CBD的中点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的面积法给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用面积法来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.

证明:连结DB,过点DBC边上的高DF,则DF=EC=b﹣a,

∵S四边形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四边形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF内接于⊙O,AB=2,则图中阴影部分的面积为(  )

A. π B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,函数y=﹣3x+b的图象与y轴相交于点B,与函数y=﹣x的图象相交于点A,且OB5

1)求点A的坐标;

2)求函数y=﹣3x+by=﹣x的图象与x轴所围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣4ax+3a.

(Ⅰ)求该二次函数的对称轴;

(Ⅱ)若该二次函数的图象开口向下,当1x4时,y的最大值是2,且当1x4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;

(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当tx1t+1,x25时,均满足y1y2,请结合图象,直接写出t的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC的边长为8,点PAB边上的一个动点(与点AB不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.

1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____

2)如图2,当PB=5时,若直线l//AC,则BB’的长度为

3)如图3,点PAB边上运动过程中,若直线l始终垂直于AC△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;

4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,∠A=36°AB的垂直平分线DEACD,交ABE,下述结论:(1)BD平分∠ABC(2)AD=BD=BC(3)BDC的周长等于AB+BC(4)DAC中点.其中正确的命题序号是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示yx之间的函数关系,根据图象解决以下问题:

(1)慢车的速度为_____km/h,快车的速度为_____km/h;

(2)解释图中点C的实际意义并求出点C的坐标;

(3)求当x为多少时,两车之间的距离为500km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程rx2+(r+2)x+r﹣1=0有根只有整数根的一切有理数r的值有(  )个.

A. 1 B. 2 C. 3 D. 不能确定

查看答案和解析>>

同步练习册答案