精英家教网 > 初中数学 > 题目详情
2.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB,交CD于E,交BC于F,若AF=BF,求证:△CEF是等边三角形.

分析 在△ABC中,AF平分∠CAB、AF=BF求得∠B=∠2=∠1=60°,根据外角性质可得∠4=60°,在RT△ADE中可得∠3=∠5=60°,进而可知∠4=∠5=60°,得证.

解答 证明:如图,

∵AF是∠BAC的平分线,
∴∠CAB=2∠1=2∠2,
∵AF=BF,
∴∠2=∠B,
∵∠ACB=90°,
∴∠B+∠CAB=90°,即∠B+2∠1=∠B+2∠2=90°,
∴∠B=∠1=∠2=30°,
∵∠4是△ABF的外角,
∴∠4=∠2+∠B=60°,
∵CD是AB边上的高,
∴∠2+∠3=90°,
∴∠3=60°,
∵∠5=∠3,
∴∠4=∠5=60°,
∴△CEF是等边三角形.

点评 本题考查了等边三角形的判定、等腰三角形的性质、角平分线的定义、直角三角形两锐角互余的性质,利用阿拉伯数字加弧线表示角更简单明了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.
(1)求证:三角形DEB是等腰三角形;
(2)判断AF与BD是否平行,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求证:∠BPC=135°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.若ax>2的解集为x<-1,求2x-a>4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD是正方形,E,F分别在AD,BC上,且DE=CF,连结AF,BE交于点M,过C作CN⊥BE于点N.求证:AM+MN=CN.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.不等式组$\left\{\begin{array}{l}{3x+2≥-4}\\{5-x>3}\end{array}\right.$的整数解是-2,-1,0,1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知A为直线y=x上一点,过A作BA⊥OA交双曲线y=$\frac{k}{x}$于B,若OA2-AB2=8,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知x=$\sqrt{2015}$-1,求x2+2x+5的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为(  )
A.$\frac{1}{2}$或$-\frac{1}{2}$B.$\frac{1}{3}$或$-\frac{1}{3}$C.$\frac{3}{4}$或$-\frac{3}{4}$D.$\frac{2}{3}$或$-\frac{2}{3}$

查看答案和解析>>

同步练习册答案