【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc<0;②2a+b=0;③当x=﹣1或x=3时,函数y的值都等于0;④4a+2b+c>0,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
【答案】D
【解析】解:根据函数图象,我们可以得到以下信息:a<0,c>0,对称轴x=1,b>0,与x轴交于(﹣1,0)(3,0)两点. ② abc<0,正确;
②∵对称轴x=﹣ =1时,
∴2a+b=0,正确;
③当x=﹣1或x=3时,函数y的值都等于0,正确;
④当x=2时,y=4a+2b+c>0,正确;
故选D.
【考点精析】关于本题考查的二次函数图象以及系数a、b、c的关系,需要了解二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.
(1)以水平的地面为x轴,两棵树间距离的中点O为原点,建立如图所示的平面直角坐标系,求出抛物线的解析式;
(2)求绳子的最低点离地面的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为( )
A.80°
B.70°
C.65°
D.60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,先把一矩形ABCD纸片上下对折,设折痕为MN;如图②,再把点B 叠在折痕线MN上,得到Rt△ABE.过B点作PQ⊥AD,分别交BC、AD于点P、Q.
(1)求证:△PBE∽△QAB;
(2)在图②中,EB是否平分∠AEC?请说明理由;
(3)在(1)(2)的条件下,若AB=4,求PE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,∠ADC=45°,把△ABC沿着直线AD对折,点C落在点E的位置,如果BC=12,那么线段BE的长度为( )
A.12
B.12
C.6
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.求证:BD⊥CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行. 同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:
时间x/min | … | 4 | 8 | 10 | 16 | 20 | 21 | 22 | 23 | 24 | 28 | 30 | 36 | 40 | 42 | 44 | … |
温度y/℃ | … | ﹣20 | ﹣10 | ﹣8 | ﹣5 | ﹣4 | ﹣8 | ﹣12 | ﹣16 | ﹣20 | ﹣10 | ﹣8 | ﹣5 | ﹣4 | a | ﹣20 | … |
(1)通过分析发现,冷柜中的温度y是时间x的函数. ①当4≤x<20时,写出一个符合表中数据的函数解析式;
②当20≤x<24时,写出一个符合表中数据的函数解析式;
(2)a的值为;
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com