精英家教网 > 初中数学 > 题目详情

【题目】如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE、BE,若△ABE是等边三角形,则=

【答案】
【解析】解:

过E作EM⊥AB于M,交DC于N,
∵四边形ABCD是矩形,
∴DC=AB,DC∥AB,∠ABC=90°,
∴MN=BC,EN⊥DC,
∵延AC折叠B和E重合,△AEB是等边三角形,
∴∠EAC=∠BAC=30°,
设AB=AE=BE=2a,则BC=a,
即MN=a,
∵△ABE是等边三角形,EM⊥AB,
∴AM=a,由勾股定理得:EM==a,
∴△DCE的面积是×DC×EN=×2a×(a﹣a)=a2
△ABE的面积是AB×EM=×2a×a=a2
==
故答案为:
过E作EM⊥AB于M,交DC于N,根据矩形的性质得出DC=AB,DC∥AB,∠ABC=90°,设AB=AE=BE=2a,则BC=a,即MN=a,求出EN,根据三角形面积公式求出两个三角形的面积,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次函数y=kx+4的图象经过点(3,﹣2)
(1)求这个函数解析式;
(2)在下面方格图中画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以ABC的边AB为直径作⊙O,与BC交于点D,点E是弧BD的中点,连接AEBC于点FACB=2BAE.

(1)求证:AC是⊙O的切线;

(2)若BD=5,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )
A.摸出的四个球中至少有一个球是白球
B.摸出的四个球中至少有一个球是黑球
C.摸出的四个球中至少有两个球是黑球
D.摸出的四个球中至少有两个球是白球

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是( )

A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将多项式ab﹣2﹣a22﹣b)因式分解的结果是(  )

A. b﹣2)(a+a2 B. b﹣2)(a﹣a2

C. ab﹣2)(a+1 D. ab﹣2)(a﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c=0a0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD的长BC与宽AB的关系是(
A.BC=2AB
B.BC= AB
C.BC=1.5AB
D.BC= AB

查看答案和解析>>

同步练习册答案