精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,一次函数 的图象是直线l1 , l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.
(1)写出A点的坐标和AB的长;
(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.

【答案】
(1)解:∵一次函数 的图象是直线l1,l1与x轴、y轴分别相交于A、B两点,

∴y=0时,x=﹣4,

∴A(﹣4,0),AO=4,

∵图象与y轴交点坐标为:(0,3),BO=3,

∴AB=5


(2)解:由题意得:AP=4t,AQ=5t, =t,

又∠PAQ=∠OAB,

∴△APQ∽△AOB,

∴∠APQ=∠AOB=90°,

∵点P在l1上,

∴⊙Q在运动过程中保持与l1相切,

①当⊙Q在y轴右侧与y轴相切时,设l2与⊙Q相切于F,由△APQ∽△AOB,得:

∴PQ=6;

故AQ=10,则运动时间为: =2(秒);

连接QF,则QF=PQ,

∵直线l2过点C(a,0)且与直线l1垂直,FQ⊥l2

∴∠APQ=∠QFC=90°,AP∥FQ,

∴∠PAQ=∠FQC,

∴△QFC∽△APQ,

∴△QFC∽△APQ∽△AOB,

得:

∴QC=

∴a=OQ+QC=OC=

②如图2,当⊙Q在y轴的左侧与y轴相切时,设l2与⊙Q相切于E,由△APQ∽△AOB得:

∴PQ=

则AQ=4﹣ =2.5,

∴则运动时间为: = (秒);

故当点P、Q运动了2秒或 秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,

连接QE,则QE=PQ,

∵直线l2过点C(a,0)且与直线l1垂直,⊙Q在运动过程中保持与l1相切于点P,

∴∠AOB=90°,∠APQ=90°,

∵∠PAO=∠BAO,

∴△APQ∽△AOB,

同理可得:△QEC∽△APQ∽△AOB得:

=

∴QC= ,a=QC﹣OQ=

综上所述,a的值是:


【解析】(1)根据一次函数图象与坐标轴的交点求法,分别求出坐标即可;(2)根据相似三角形的判定得出△APQ∽△AOB,以及当⊙Q在y轴右侧与y轴相切时,当⊙Q在y轴的左侧与y轴相切时,分别分析得出答案.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】广安某网站调查,2016年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若广安市约有900万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(Ⅱ)如图②,若∠CAB=60°,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.

(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球. (Ⅰ)取出的3个球恰好是2个红球和1个白球的概率是多少?
(Ⅱ)取出的3个球全是白球的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①SADB=SADC
②当0<x<3时,y1<y2
③如图,当x=3时,EF=
④当x>0时,y1随x的增大而增大,y2随x的增大而减小.
其中正确结论的个数是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.
甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1 , D三点的坐标分别是(0,4),(0,3),(0,2).

(1)求对称中心的坐标.
(2)写出顶点B,C,B1 , C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.

(1)求点A的坐标。
(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.

查看答案和解析>>

同步练习册答案