精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= ,则图中阴影部分的面积为

【答案】
【解析】解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1, ∴OB= = ,sin∠AOB= = ,∠AOB=30°.
同理,可得出:OD=1,∠COD=60°.
∴∠AOC=∠AOB+(180°﹣∠COD)=30°+180°﹣60°=150°.
在△AOB和△OCD中,有
∴△AOB≌△OCD(SSS).
∴S阴影=S扇形OAC
∴S扇形OAC= πR2= π×22= π.
故答案为: π.
通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC , 套入扇形的面积公式即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】比较正五边形与正六边形,可以发现它们的相同点和不同点.例如: 它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.
请你再写出它们的两个相同点和不同点:
相同点:


不同点:


查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有(
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是(
A.
B.2
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.
(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;
(2)分别求该公司3月,4月的利润;
(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离( 取1.73,结果精确到0.1千米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.
(1)求甲、乙两种糖果的价格;
(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
(1).小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF. 小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
(2).【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
(3).【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
(4).【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且ADCE=DEBC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

查看答案和解析>>

同步练习册答案