精英家教网 > 初中数学 > 题目详情
9.用2根同样长的木条AB,CD和另外两根同样长的木条AD,BC拼成一个四边形ABCD,
(1)连接AC,△ABC≌△CDA么?
(2)求证:AB∥CD.

分析 (1)由SSS证明△ABC≌△CDA即可;
(2)由全等三角形的性质得出对应角相等∠BAC=∠DCA,由平行线的判定方法即可得出结论.

解答 (1)解:△ABC≌△CDA;理由如下:
在△ABC和△CDA中,$\left\{\begin{array}{l}{AB=CD}&{\;}\\{BC=DA}&{\;}\\{AC=CA}&{\;}\end{array}\right.$,
∴△ABC≌△CDA(SSS);
(2)证明:由(1)得:△ABC≌△CDA,
∴∠BAC=∠DCA,
∴AB∥CD.

点评 本题考查了全等三角形的判定与性质、平行线的判定方法;本题难度适中,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…
根据上述算式中的规律,你认为32016的末位数字是(  )
A.3B.9C.7D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知2x6y2和-$\frac{1}{2}{x^{3m}}{y^n}$是同类项,那么2m+n的值是(  )
A.2B.4C.6D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直角坐标系中,A(0,4),B(4,0),点M、N分别在y轴和x轴上,N点在B点右侧,且AM=BN.
(1)求S△AOB
(2)如图①,若点M在AO上,求证:CM=CN;
(3)如图②,若点M在y轴负半轴上,(2)中的结论是否成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知,在△ABC中,AD是角平分线,AD=BD,AB=2AC,求证:△ACB是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=6,OC=4,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为|MN|=$\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{{y}_{1})}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.△ABC在平面直角坐标系中的位置如图所示.
(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;
(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,双曲线y=$\frac{k}{x}$经过抛物线y=ax2+bx的顶点(-$\frac{1}{2}$,m)(m>0),则有(  )
A.a=b+2kB.a=b-2kC.k<b<0D.a<k<0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.二次函数y=2(x+1)2+3的图象为抛物线,它的顶点坐标为(-1,3).

查看答案和解析>>

同步练习册答案