【题目】如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D.
(1)求证:AO平分∠BAC;
(2)若BC=6,sin∠BAC=,求AC和CD的长.
【答案】(1)证明见解析;(2)AC= , CD= ,
【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
本题解析:
解:(1)证明:延长AO交BC于H,连接BO.
∵AB=AC,OB=OC,
∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
又∵AB=AC,∴AO平分∠BAC.
(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
∴∠EBC=90°,BC⊥BE.
∵∠E=∠BAC,∴sinE=sin∠BAC.
∴=.∴CE=BC=10.
∴BE==8,OA=OE=CE=5.
∵AH⊥BC,∴BE∥OA.
∴=,即=,
解得OD=.∴CD=5+=.
∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
在Rt△ACH中,AC===3.
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,在平面直角坐标系中,已知抛物线与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使≌,若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B 两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
(1)求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);
(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是菱形,AC、BD交于点E,点F在CB的延长线上,连结EF交AB于H,以EF为直径作⊙O,交直线AD于A、G两点,交BC于K点.
(1)如图1,连结AF,求证:四边形AFBD是平行四边形;
(2)如图2,当∠ABC=90°时,求tan∠EFC的值;
(3)如图3,在(2)的条件下,连结OG,点P在弧FG上,过点P作PT∥OF交OG于T,PR∥OG交OF于R点,连结TR,若AG=2,在点P运动过程中,探究线段TR的长是否为定值,如果是,则求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BC为直径,∠BAC的平分线与BC和⊙O分别相交于D和E,P为CB延长线上一点,PB=5,PA=10,且∠DAP=∠ADP.
(1)求证:PA与⊙O相切;
(2)求sin∠BAP的值;
(3)求ADAE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,正方形ABCD中,E、F分别是AD、DC边上的点,CE与BF交于点G,BF⊥CE,求证:BF=CE;
(2)如图2,矩形ABCD中,AB=2AD,E、F分别是AD、DC边上的点,CE与BF交于点G,∠A+∠BGE=180°,求证:CE=2BF;
(3)如图3,若(2)中的四边形ABCD是平行四边形,且∠A<90°,则CE=2BF是否仍然成立?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD·OE;
(3)若cos∠BAD=,BE=6,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.
(1)、求证:△ABE≌△AD’F;
(2)、连接CF,判断四边形AECF是否为平行四边形?请证明你的结论。
(3)、若AE=5,求四边形AECF的周长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com