精英家教网 > 初中数学 > 题目详情
我国重要银行的商标设计都融入了中国古代钱币的图案,下列我国四大银行的商标图案不是轴对称图形的是(  )
A.B.C.D.
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误;
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AB=AC=5cm,BC=3cm,∠A=40°,点A和点B关于直线l对称,AC与l相交于点D,则∠C=______,△BDC的周长等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,若将AC沿AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学老师在课堂上展示一矩形纸片,如图,在矩形ABCD中,AB=6cm,BC=8cm.他要将此矩形做一个梯形教具,现进行如下操作:
先将矩形ABCD的点D折叠到对角线AC上的点F处,折痕为CE,再将折叠的部分裁掉;
问:(1)所裁部分DE的长;
(2)所裁成的梯形ABCE的面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),在Rt△ABCd,∠B=90°,A十平分∠BAC,将AB沿A十折叠,使点B落在AC上一点D处,已知AB=1,BC=8,可用下面的方法求线段B十的长:
由折叠可知:AD=AB=1,B十=D十,∠AD十=∠AB十=90°
在Rt△ABCd,∠B=90°,∴AC2=AB2+BC2=12+82=100
∴AC=10,CD=AC-AD=d,设B十=D十=得,则C十=8-得
在Rt△C十Dd,∠十DC=90°,∴十C2=十D2+CD2,即(8-得)2=得2+d2,整理得:1d-11得=11
解得:得=1
仿上面的解答法解答下题:
如图(2),在矩形ABCDd,AB=的cm,AD=11cm,在边CD上适当选定一点十,沿直线A十把△AD十折叠,使点D恰好落在边BC上一点F处,求D十的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)在如图1所示的平面直角坐标系中画出点A(2,3),再画出点A关于y轴的对称点A',则点A'的坐标为______;
(2)在图1中画出过点A和原点O的直线l,则直线l的函数关系式为______;再画出直线l关于y轴对称的直线l',则直线l'的函数关系式为______;
(3)在图2中画出直线y=2x+4(即直线m),再画出直线m关于y轴对称的直线m',则直线m'的函数关系式为______;
(4)请你根据自己在解决以上问题的过程中所获得的经验回答:直线y=kx+b(k、b为常数,k≠0)关于y轴对称的直线的函数关系式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为______.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图①,矩形纸片ABCD,AB=12cm,AD=16cm,现按以下步骤折叠:(1)将∠BAD对折,使AB落在AD上,得折痕AF,如图②;(2)将△AFB沿BF折叠,AF与DC交于点G,如图③,则GC的长为______.

查看答案和解析>>

同步练习册答案