精英家教网 > 初中数学 > 题目详情

【题目】如上图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.则 =

【答案】
【解析】解:∵AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,
∴Rt△AFE≌Rt△ABE(AAS),
∴AF=AB.①
在Rt△AGF中,∵∠FAG=45°,
∴AG=FG,
∴AF2=AG2+FG2=2FG2 . ②
由①,②得 =
所以答案是:
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ADBC相交于点OOA=ODOB=OC.下列结论正确的是(  )

A. AOB≌△DOC B. ABO≌△DOC C. A=C D. B=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问

(1)在刚出发时我公安快艇距走私船多少海里?

(2)计算走私船与公安快艇的速度分别是多少?

(3)写出L1,L2的解析式

(4)问6分钟时两艇相距几海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简下列各式:
(1)4(a+b)2﹣2(a+b)(2a﹣2b)
(2)( ﹣m+1)÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交x轴于A(4,0)、B(﹣1,0),交y轴于点C(0,﹣3),过点A的直线y=﹣ x+3交抛物线于另一点D.

(1)求抛物线的解析式及点D的坐标;
(2)若点P位x轴上的一个动点,点Q在线段AC上,且Q到x轴的距离为 ,连接PC、PQ,当△PCQ的周长最小时,求出点P的坐标;
(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1 , 使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1) (2)

(3) (4)

(5) (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为6,E为BC上的一点,BE=2,F为AB上的一点,AF=3,P为AC上一点,则PF+PE的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:
观察下列等式:
将以上三个等式两边分别相加得:

(1)直接写出下列各式的计算结果:
=
(2)猜想并写出: = ).
(3)探究并解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.

(1)求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=AD=8,求CD的长.

查看答案和解析>>

同步练习册答案