精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣(x﹣1)2+cx轴交于ABAB分别在y轴的左右两侧)两点,y轴的正半轴交于点C,顶点为D,已知A(﹣10)

1)求点BC的坐标;

2)判断CDB的形状并说明理由;

3)将COB沿x轴向右平移t个单位长度(0t3)得到QPEQPECDB重叠部分(如图中阴影部分)面积为S,求St的函数关系式,并写出自变量t的取值范围.

【答案】(1)B(3,0),C(0,3),(2)△CDB为直角三角形;(3)S=

【解析】试题分析:(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标;
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形;
(3)△COB沿x轴向右平移过程中,分两个阶段:
(I)当0<t≤时,如答图2所示,此时重叠部分为一个四边形;
(II)当<t<3时,如答图3所示,此时重叠部分为一个三角形.

试题解析:(1)∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,

∴0=﹣(﹣1﹣1)2+c,得c=4,

∴抛物线解析式为:y=﹣(x﹣1)2+4,

令x=0,得y=3,

∴C(0,3);

令y=0,得x=﹣1或x=3,

∴B(3,0).

(2)△CDB为直角三角形.

理由如下:由抛物线解析式,得顶点D的坐标为(1,4).

如答图1所示,

过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.

过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.

在Rt△OBC中,由勾股定理得:BC=

在Rt△CND中,由勾股定理得:CD=

在Rt△BMD中,由勾股定理得:BD=

∵BC2+CD2=BD2,∴△CDB为直角三角形(勾股定理的逆定理).

(3)设直线BC的解析式为y=kx+b,

∵B(3,0),C(0,3),

解得k=﹣1,b=3,

∴y=﹣x+3,直线QE是直线BC向右平移t个单位得到,

∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;

设直线BD的解析式为y=mx+m,

∵B(3,0),D(1,4),

解得:m=﹣2,n=6,

∴y=﹣2x+6.连接CQ并延长,射线CQ交BD于点G,则G(1.5,3).

在△COB向右平移的过程中:

(I)当0<t≤1.5时,如答图2所示:设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.

设QE与BD的交点为F,则:

解得

∴F(3﹣t,2t).

S=S△QPE﹣S△PBK﹣S△FBE=0.5PEPQ=0.5PBPK=0.5BEyF==0.5×3×3=0.5(3﹣t)2=0.5t2t=-1.5t2+3t;

(II)当1.5<t<3时,如答图3所示:设PQ分别与BC、BD交于点K、点J.

∵CQ=t,∴KQ=t,PK=PB=3﹣t.直线BD解析式为y=﹣2x+6,

令x=t,得y=6﹣2t,

∴J(t,6﹣2t).

S=S△PBJ﹣S△PBK=0.5PBPJ﹣0.5PBPK=0.5(3﹣t)(6﹣2t)﹣0.5(3﹣t)2=0.5t2﹣3t+4.5.

综上所述,S与t的函数关系式为:S=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.

(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:

请结合图中信息解答下列问题:

(1)求出随机抽取调查的学生人数;

(2)补全分组后学生学习兴趣的条形统计图;

(3)分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.

(1)请在图中画出△AEF.

(2)请在x轴上找一个点P,使PA+PE的值最小,并直接写出P点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列一元二次方程中两根之和为﹣3的是(

A.x23x+30B.x2+3x+30C.x2+3x30D.x2+6x40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:x3·x5所得结果是( )

A. x15B. x8C. x2D. x7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求下列代数式的值

(1)若a=-2b=-3,则代数式(a+b)2-(a-b)2=___________

(2)当x-y=3时,代数式2(x-y)2+3x-3y+1=___________.

3)化简并求值:已知三个有理数的积是负数,其和为正数;当时,求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近两年,市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点ADCE在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FDAE于点D,座杆CE=15cm,且∠EAB=75°.

(1)求AD的长;

(2)求点EAB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

同步练习册答案