精英家教网 > 初中数学 > 题目详情

【题目】已知,AB∥CD,点E为射线FG上一点.
(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;
(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;
(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.

【答案】
(1)解:∠AED=∠EAF+∠EDG.

理由:如图1,过E作EH∥AB,

∵AB∥CD,

∴AB∥CD∥EH,

∴∠EAF=∠AEH,∠EDG=∠DEH,

∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;


(2)解:证明:如图2,设CD与AE交于点H,

∵AB∥CD,

∴∠EAF=∠EHG,

∵∠EHG是△DEH的外角,

∴∠EHG=∠AED+∠EDG,

∴∠EAF=∠AED+∠EDG;


(3)解:)∵AI平分∠BAE,

∴可设∠EAI=∠BAI=α,则∠BAE=2α,

∵AB∥CD,

∴∠CHE=∠BAE=2α,

∵∠AED=20°,∠I=30°,∠DKE=∠AKI,

∴∠EDI=α+30°﹣20°=α+10°,

又∵∠EDI:∠CDI=2:1,

∴∠CDI= ∠EDK= α+5°,

∵∠CHE是△DEH的外角,

∴∠CHE=∠EDH+∠DEK,

即2α= α+5°+α+10°+20°,

解得α=70°,

∴∠EDK=70°+10°=80°,

∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.


【解析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI= α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α= α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.
【考点精析】关于本题考查的平行线的性质和三角形的内角和外角,需要了解两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.

(1)求一次函数与反比例函数的解析式;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果△ABC的两边长分别为3和5,那么连结△ABC三边中点DEF所得的△DEF的周长可能是(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知梯形的上底长为a , 中位线长为m , 那么这个梯形的下底长为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P(x,y)满足|x+2|+(2y﹣x﹣1)2=0,则P到y轴的距离是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程或不等式(组)
(1)
(2) (并写出不等式的整数解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2x+2(a0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).

(1)求抛物线与直线AC的函数解析式;

(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;

(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将ADE沿AE对折至AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①ABG≌△AFG;②BG=GC;③EG=DE+BG;④AGCF;⑤S△FGC=3.6.其中正确结论的个数是(

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于两个不相等的实数a、b , 我们规定符号Max{a , b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x , ﹣x}= 的解为( ).
A.1﹣
B.2﹣
C.1+ 或1﹣
D.1+ 或﹣1

查看答案和解析>>

同步练习册答案