【题目】如图,在菱形ABCD中,点 E、F分别为边 AD、CD上的动点(都与菱形的顶点不重合),联结 EF、BE、BF .
(1)若∠A=60°,且 AE+CF=AB,判断△BEF 的形状,并说明理由;
(2)在(1)的条件下,设菱形的边长为a,求△BEF面积的最小值.
【答案】(1)△BEF的形状为等边三角形(2)
【解析】试题分析:(1)通过证明BE=BF,求出∠EBF的度数,可判断△BEF是等边三角形.
(2)当BE⊥AD时,BE最小,此时,S△BEF最小.求出此时的边EF长,及其对应高BM的长,按照三角形的面积公式即可求出.
试题解析:解:(1)△BEF的形状为等边三角形.证明如下:
如图,在菱形ABCD中,∠A=60°,∴AB∥DC,AB=BC=CD=DA,∴∠ADC=120°,∴∠1=∠2=60°,∴∠ABD=∠1=∠A=60°,∴AB=BD,∠A=∠2.
∵AE+CF=AB,DF+CF=CD,∴AE=DF,∴△ABE≌△DBF,∴BE=BF,∠3=∠4.
又∵∠3+∠5=60°,∴∠4+∠5=60°,∴△BEF为等边三角形.
(2)如图,当BE⊥AD时,BE最小,此时,S△BEF最小.
设此时EF与BD交于点M,∴∠ABE=∠DBE=30°.
∵∠BEM=60°,∴∠BME=90°.
在Rt△ABE中,AB=a,∴.
在Rt△BEM中,∠BEM=60°,∴.
∴.
科目:初中数学 来源: 题型:
【题目】如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.
(1)若x=17,则a+b+c+d= .
(2)移动十字框,用x表示a+b+c+d= .
(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C、D、E五位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定A打第一场,再从其余四位同学中随机选取一位,求恰好选中B同学的概率;
(2)请用画树状图或列表法,求恰好选中A、B两位同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.
(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果100个乒乓球中有20个红色的,那么在随机抽出的20个乒乓球中( )
A.刚好有4个红球
B.红球的数目多于4个
C.红球的数目少于4个
D.以上都有可能
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如下图, AB∥CD,点E,F分别为AB,CD上一点.
(1) 在AB,CD之间有一点M(点M不在线段EF上),连接ME,MF,试探究∠AEM,∠EMF,∠MFC之间有怎样的数量关系. 请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.
(2)如下图,在AB,CD之间有两点M,N,连接ME,MN,NF,请选择一个图形写出∠AEM,∠EMN,∠MNF,∠NFC 存在的数量关系(不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点 F,∠ADB=30°,则EF=---------------------------------------------( )
A. 3 B. 2 C. 3 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程2(x﹣3)﹣m=2的解和方程3x﹣7=2x的解相同.
(1)求m的值;
(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句:①近似数0.010精确到千分位;②如果两个角互补,那么两个角一定是一个为锐角,另一个为钝角;③若线段AP=BP,则P一定是AB中点;④A与B两点间的距离是指连接A、B两点间的线段;⑤││=,其中说法正确的是________________________.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com