精英家教网 > 初中数学 > 题目详情

【题目】如图(1)是一个长为2m,宽为2n的长方形,沿图中虚线剪成四个均匀的小长方形,然后按图(2)形状拼成一个正方形.

(1)你认为图(2)中的阴影部分的正方形的边长等于多少?

(2)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:

(3)已知:,求的值.

【答案】(1)m-n;(2)+;(3)25.

【解析】

(1)观察图形很容易得出图b中的阴影部分的正方形的边长等于m-n;

(2)观察图形可知大正方形的面积(m+n)2,减去阴影部分的正方形的面积(m-n)2等于四块小长方形的面积4mn,即(m+n)2=(m-n)2+4mn;

(3)(2)很快可求出(m-n)2=(m+n)2-4mn=49-4×6=25.

:(1)mn;

(2)(m+n)2=(mn)2+4mn;

(3)(mn)2=(m+n)24mn=494×6=25.

故答案为:(1)m-n;(2)+;(3)25.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC,ADE 均是等腰直角三角形,BC DE 相交于 F 点,若 AC=AE=1,则四边形 AEFC 的周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a<21)个单位到△DEF的位置.

(1)BC边上的高;

(2)AB=10,

①求线段DF的长;

②连结AE,当△ABE时等腰三角形时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一长方形花园用来种植菊花和郁金香,其余作为休息区;

(1)求种植菊花和郁金香的面积;

(2)m,m时,种植菊花和郁金香的面积是多少m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

(1)如果∠1=∠B,那么______________,根据是__________________________

(2)如果∠3=∠D,那么______________,根据是__________________________;

(3)如果要使BE∥DF,必须∠1=∠_______,根据是_________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形 ABCDA=90°,AB=3mBC=12mCD=13mDA=4m

(1)求证:BDCB

(2)求四边形 ABCD 的面积;

(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,

Py轴上,若 SPBD=S四边形ABCD P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2 x+c与y轴交于点A(0,﹣ ),与x轴交于B、C两点,其对称轴与x轴交于点D,直线l∥AB且过点D.

(1)求AB所在直线的函数表达式;
(2)请你判断△ABD的形状并证明你的结论;
(3)点E在线段AD上运动且与点A、D不重合,点F在直线l上运动,且∠BEF=60°,连接BF,求出△BEF面积的最小值.
解:

查看答案和解析>>

同步练习册答案