【题目】如图,把一张直角三角形卡片ABC放在每格宽度为12mm的横格纸中,三个顶点恰好都落在横格线上,已知∠BAC=90°,∠α=36°,求直角三角形卡片ABC的面积(精确到1mm).(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
【答案】直角三角形卡片ABC的面积约为1200mm2
【解析】试题分析:作BD⊥l于点D,CE⊥l于点E,∵∠α+∠CAE=180°﹣∠BAC=180°﹣90°=90°,∠ACE+∠CAE=90°∴∠ACE=∠α=36°;在Rt△ABD中,可以解得AB的长,在Rt△ACE中,可以解得AC的长,从而可求得三角形ABC的面积.
试题解析:解:作BD⊥l于点D,CE⊥l于点E,如下图所示:
∵∠α+∠CAE=180°﹣∠BAC=180°﹣90°=90°,∠ACE+∠CAE=90°
∴∠ACE=∠α=36°
由已知得BD=24mm,CE=48mm,在Rt△ABD中,sinα=,∴AB=≈=40mm;
在Rt△ACE中,cos∠ACE=,∴AC=≈=60mm
∴=ABAC=×40×60=1200(mm2)
答:直角三角形卡片ABC的面积约为1200mm2.
科目:初中数学 来源: 题型:
【题目】甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.
(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;
(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B地所用的时间的值为 ;
(3)行驶过程中,两车出发多长时间首次后相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图平行四边形 ABCD 中,∠ABC=60°,点 E、F 分别在 CD、BC 的延长线上,AE∥BD,EF⊥BF,垂足为点 F,DF=2.
(1)求证:D 是 EC 中点;
(2)求 FC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E在边CD上
(1)以A为中心,把△ADE按顺时针方向旋转90°,画出旋转后的图形;
(2)设旋转后点E的对应点为F,连接EF,△AEF是什么三角形
(3)若四边形AECF的面积为25,DE=2,求AE的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC与△A′B′C′在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: A′ ;B′ ;C′ ;
(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF.△ABC旋转后能与△FBE重合,请回答:
(1)旋转中心是点____,
(2)旋转了____度,
(3) AC与EF的关系为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一批单价为20元的商品,若每件按30元的价格销售时,每天能卖出60件;若每件按50元的价格销售时,每天能卖出20件,假定每天销售件数y(件)与销售价格x(元/件)满足y=kx+b.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不考虑其他因素的情况下,每件商品销售价格定为多少元时才能使每天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
当t为何值时,四边形ABQP是矩形;
当t为何值时,四边形AQCP是菱形;
分别求出(2)中菱形AQCP的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个内角为60°的菱形 ABCD中,AB=2,点P以每秒1cm的速度从点A出发,沿AD→DC的路径运动,到点C停止,过点P 作PQ⊥BD,PQ 与边AD(或边CD)交于点Q,△ABQ的面积y(cm2)与点P 的运动时间x(秒)的函数图象大致是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com