【题目】(1)阅读理解:
如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是___________;
(2)问题解决: 如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,以C为顶点作∠ECF,使得角的两边分别交AB,AD于E、F两点,连接EF,且EF=BE+DF,试探索∠ECF与∠A之间的数量关系,并加以证明.
【答案】(1)1<AD<4;(2)证明见解析;(3)∠A+2∠ECF=180°,理由见解析.
【解析】
(1)延长AD到E,使DE=AD,连接BE,证△ADC≌△EDB,推出EB=AC,根据三角形的三边关系求出即可;
(2)先利用ASA判定△BGD≌△CFD,从而得出BG=CF;再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF;
(3)延长EB到G,使BG=DF,连接CG,通过SAS证明△CDF≌△CBG,得到CG=CF,∠BCG=∠DCF,再证明△CEF≌△CEG,得到∠ECF=∠EDG,由∠A+∠BCD=180°,通过等量代换即可得到∠A+2∠ECF=180°.
(1)延长AD到E,使AD=DE,连接BE,
∵AD是△ABC的中线,
∴BD=CD,
在△ADC与△EDB中,
,
∴△ADC≌△EDB(SAS),
∴EB=AC,
∵AB=5,AC=3,
根据三角形的三边关系得:AB-AC<AE<AC+AB,
∴2<AE<8,
∵AE=2AD
∴1<AD<4,
即:BC边上的中线AD的取值范围1<AD<4,
故答案为:1<AD<4;
(2)过点B作BG∥AC交FD的延长线于G,连接EG,
∴∠DBG=∠DCF.
∵D为BC的中点,
∴BD=CD,
又∵∠BDG=∠CDF,
∴△BGD≌△CFD(ASA).
∴GD=FD,BG=CF,
又∵DE⊥DF,
∴EG=EF(垂直平分线到线段端点的距离相等).
∴在△EBG中,BE+BG>EG,
即BE+CF>EF;
(3)∠A+2∠ECF=180°,理由如下:
延长EB到G,使BG=DF,连接CG,
∵∠D+∠ABC=180°,∠ABC+∠CBG=180°,
∴∠D=∠CBG,
又∵CD=CB,DF=BG,
∴△CDF≌△CBG,
∴CF=CG,∠DCF=∠BCG,
∵EF=DF+BE,EG=BE+BG,DF=BG,
∴EF=EG,
又∵EC=EC,
∴△CEF≌△CEG,
∴∠ECF=∠ECG,
∵∠BCD=∠DCF+∠BCF,
∴∠BCD=∠BCF+∠BCG=∠FCG=∠ECF+∠ECG=2∠ECF,
∵∠D+∠A+∠ABC+∠BCD=360°,∠D+∠ABC=180°,
∴∠A+∠BCD=180°,
∴∠A+2∠ECF=180°.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=(x﹣1)2+k的图象与x轴交于点A(﹣1,0),C两点,与y轴交于点B.
(1)求抛物线解析式及B点坐标;
(2)在抛物线上是否存在点P使S△PAC=S△ABC?若存在,求出P点坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形,若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个30°的角BAC与角MON,顶点A在射线ON上某处,现保持角MON不动,将角BAC绕点A以每秒15°的速度顺时针旋转,边AB、AC分别与边OM交于点P、Q,当AC∥OM时,交点Q消失旋转结束。设运动时间为t秒(t>0).
(1)当t=2秒时,OP:PQ= ;
(2)在运动的过程中,△APQ能否成为等腰三角形?若能,请利用备用图,直接写出此时的运动时间;
(3)在(2)中判断△OAQ的形状,并选择其中的一个说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称:DF⊥DE于点D,并交EC的延长线于点F,下列结论:
①CE=CF;
②线段EF的最小值为;
③当AD=1时,EF与半圆相切;
④当点D从点A运动到点O时,线段EF扫过的面积是4.
其中正确的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的顶点,且经过点,与轴分别交于两点.
(1)求直线和该抛物线的解析式;
(2)如图1,点是抛物线上的一个动点,且在直线的上方,过点作轴的平行线与直线交于点,求的最大值;
(3)如图2,轴交轴于点,点是抛物线上、之间的一个动点,直线、与分别交于、,当点运动时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于F。
(1)求证:AF+EF=DE;
(2)若将图1中的△DBE绕点B顺时针旋转角α,且60°<α<180°,其他条件不变,如图2,请直接写出此时线段AF,EF与DE之间的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个正整数能写成的形式(其中a,b均为自然数),则称之为婆罗摩笈多数,比如7和31均是婆罗摩笈多数,因为7=22+3×12,31=22+3×32。
(1)请证明:28和217都是婆罗摩笈多数。
(2)请证明:任何两个婆罗摩笈多数的乘积依旧是婆罗摩笈多数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分别过点A1,A2,A3,…,An作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…,Pn.若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3……依次进行下去,最后记△Pn-1Bn-1Pn(n>1)的面积为Sn,则Sn=( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为( )
A.12寸 B.13寸 C.24寸 D.26寸
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com