精英家教网 > 初中数学 > 题目详情

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

【答案】
(1)解:因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以

解得

所以一次函数解析式为y=x2+2x﹣3


(2)解:∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),

∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,

此时PA+PD=PA+PC=AC= = =3


(3)解:设点P坐标(m,m2+2m﹣3),

令y=0,x2+2x﹣3=0,

x=﹣3或1,

∴点B坐标(1,0),

∴AB=4

∵SPAB=6,

4|m2+2m﹣3|=6,

∴m2+2m﹣6=0,m2+2m=0,

∴m=0或﹣2或1+ 或1﹣

∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+ ,3)或(1﹣ ,3).


【解析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.

(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB90°A22.5°,斜边AB的垂直平分线交AC于点D,点FAC上,点EBC的延长线上,CECF,连接BFDE.线段DEBF在数量和位置上有什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列结论:
①ac<0;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形的顶点的坐标为,点轴正半轴上,点在第三象限的双曲线上,过点轴交双曲线于点,连接,则的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,抛物线y=x22mx+m2+m的顶点为A,与y轴交于点B.当抛物线不经过坐标原点时,分别作点AB关于原点的对称点CD,连结ABBCCDDA

1)分别用含有m的代数式表示点AB的坐标.

2)判断点B能否落在y轴负半轴上,并说明理由.

3)连结AC,设l=AC+BD,求lm之间的函数关系式.

4)过点Ay轴的垂线,交y轴于点P,以AP为边作正方形APMNMNAP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是一个供滑板爱好者使用的U型池,该U型池可以看成是一个长方体去掉一个“半圆柱”,中间可供滑行部分的截面是半径为4 m的半圆,其边缘ABCD=20 m,点ECD上,CE=2 m.一滑板爱好者从A点滑到E点,则他滑行的最短路程约为____________(边缘部分的厚度忽略不计,结果保留整数.提示:482≈222).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,B=30°,AD平分CAB.

(1)求CAD的度数;

(2)延长AC至E,使CE=AC,求证:DA=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读,后解答:

像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,

(1)的有理化因式是________;的有理化因式是________.

(2)将下列式子进行分母有理化:①________;②________.

(3)计算

查看答案和解析>>

同步练习册答案