精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,,E是AB上一点,BE=2,AE=4BE,P是AC上一动点,则PB+PE的最小值是     


解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小。

∵四边形ABCD是菱形,∴B、D关于AC对称。

∴PB=PD,∴PB+PE=PD+PE=DE。

∵BE=2,AE=4BE,∴AE=8,AD=AB= 10。

过点D作DF⊥AB于点F,

,∴AF=8。

∴点E与点F重合。∴

∴PB+PE的最小值是6。

【考点】单动点问题,菱形的性质,应用轴对称确定最短路线,锐角三角函数定义,勾股定理。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


 如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点PQ运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为tt >0)秒.

(1)求线段AC的长度;

(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;

(3)伴随着PQ两点的运动,线段PQ的垂直平分线为l

①当l经过点A时,射线QPAD于点E,求AE的长;

②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10

(1)求梯形ABCD的面积;

(2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问:

①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由.

②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图, 在Rt△ABC中,∠C=90º, AC=9,BC=12,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ. 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=__________, PD=___________;

(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;

(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,已知△ABC为等腰直角三角形,点D为边BC上的一动点(点D不与B、C重合),以AD为边作正方形ADEF(A、D、E、F按逆时针排列),连接CF。求证: CF+CD=AC。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,一个半径为r的圆形纸片在边长为)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是(    )

A.        B.         C.         D.

查看答案和解析>>

科目:初中数学 来源: 题型:


在平面直角坐标系中,已知点A(0,)、B(0,3),点C是x轴上的一个动点,当∠BCA=45°时,点C的坐标为       

查看答案和解析>>

科目:初中数学 来源: 题型:


【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.

【探究展示】

(1)证明:AM=AD+MC;

(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

【拓展延伸】

(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:


同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(    ) 

A、a∥d      B、b⊥d     C、a⊥d    D、b∥c 

查看答案和解析>>

同步练习册答案