精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为 ,上、下底之比为1:2,则BD的长是( ).

A.5
B.5
C.3
D.3

【答案】B
【解析】设梯形的四边长为5,5,x,2x, 则 , x=5, 则AB=CD=5,AD=5,BC=10, ∵AB=AD, ∴∠ABD=∠ADB, ∵AD∥BC, ∴∠ADB=∠DBC, ∴∠ABD=∠DBC, ∵∠ABC=60°, ∴∠DBC=30°, ∵等腰梯形ABCD,AB=DC, ∴∠C=∠ABC=60°, ∴∠BDC=90°, ∴在Rt△BDC中,由勾股定理得: , 故答案为: .根据题意设四边的长分别为5,5,x,2x,先根据平均数的公式求出四边的长,再证明△BDC是直角三角形,然后利用勾股定理求出BD的长即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】给出下列5个图形:线段、等边三角形、角、平行四边形、正五角星,其中,一定是轴对称图形的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CE⊥AB,BF⊥AC,垂足分别为E,F,BF交CE于点D,BD=CD.

(1)求证:点D在∠BAC的平分线上.
(2)若将条件“BD=CD”与(1)中结论“点D在∠BAC的平分线上”互换,成立吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN

(1)线段MN和GD的数量关系是_____,位置关系是_____

(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;

(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果正多边形的一个外角为40°,那么它是正_____边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家樱桃采摘园的品质相同,销售价格也相同,“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.

(1)甲、乙两采摘园优惠前的草莓销售价格是每千克_____元;

(2)求y1、y2与x的函数表达式;

(3)在图中画出y1与x的函数图象,若某人想在“五一期间”采摘樱桃25千克,那么甲、乙哪个采摘园较为优惠?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a+3b﹣2=0,则3a27b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实数8的立方根是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+ax+a-2=0

1若该方程有一个实数根为1,求a的值及方程的另一实根.

2求证:不论a取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

同步练习册答案