【题目】已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,
求:(1)AB的长为________;
(2)S△ABC=________.
【答案】 4 2+2
【解析】试题分析:(1)过点A作AD⊥BC,根据题意可得CD=AD,再根据勾股定理可求得AD的长,最后根据含30°的直角三角形的性质求解即可;
(2)在Rt△ABD中,得用勾股定理求得BD长,从而得到BC长,再利用三角形的面积公式计算即可得.
试题解析:(1)过点A作AD⊥BC于点D,则∠ADC=∠ADB=90°,
∵∠C=45°,∴∠DAC=90°-∠C=45°,∴∠C=∠DAC,∴AD=CD,
∵AC2=AD2+CD2,AC=,∴AD=CD=2,
∵∠ADB=90°,∠B=30°,∴AB=2AD=4,
故答案为:4;
(2)在Rt△ABD中,由勾股定理得:BD==2,
∴BC=BD+CD=2+2,
∴S△ABC= =2+2,
故答案为:2+2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P的对应点为P1(a+5,b+4).
(1)写出△A1B1C1的三个顶点的坐标;
(2)求△ABC的面积;
(3)请在平面直角坐标系中画出△A1B1C1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,下列说法不正确的是( )
A. 汽车在行驶途中停留了0.5小时
B. 汽车在行驶途中的平均速度为千米/小时
C. 汽车共行驶了240千米
D. 汽车自出发后3小时至4.5小时之间行驶的速度是80千米/小时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在2×2的正方形网格中有9个格点,已经取定点A,B,C,在余下的6个点中任取一点P,满足△ABP与△ABC相似的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图所示,AB//CD,点E在AD的延长线上,∠EDC与∠B互为补角.
(1)问AD,BC是否平行?请说明理由;
(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,P、Q分别是边AB、BC上的两个动点,P、Q同时分别从A、B出发,点P沿AB向B运动;点Q沿BC向C运动,速度都是1个单位长度/秒.运动时间为t秒.
(1)连结AQ、DP相交于点F,求证:AQ⊥DP;
(2)当正方形边长为4,而t=3时,求tan∠QDF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD= ______ °时,四边形BECD是矩形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com