【题目】如图,CD是⊙O的直径,∠EOD=72°,AE交⊙O于点B,且AB=OC,求∠A的度数.
【答案】解:设∠A=x°,
∵AB=OC,OC=OB,
∴AB=OB,
∴∠AOB=∠A=x°,
∴∠OBE=∠A+∠AOB=2x°,
∵OB=OE,
∴∠E=∠OBE=2x°,
∴∠EOD=∠A+∠E=3x°=72°,
∴∠A=24°.
【解析】由AB=OC,OC=OB,得出AB=OB,根据等边对等角得出∠AOB=∠A,根据三角形的外角得出∠OBE=∠A+∠AOB,又有OB=OE,故∠E=∠OBE从而得出方程求解即可。
【考点精析】掌握三角形的外角和等腰三角形的性质是解答本题的根本,需要知道三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等腰三角形的两个底角相等(简称:等边对等角).
科目:初中数学 来源: 题型:
【题目】某学校在一次环保知识宣传活动中,需要印刷若干份调查问卷。印刷厂有甲、乙两种收费方式:甲种方式收制版费6元,每一份收印刷费0.1元;乙种方式不收制版费,每印一份收印刷费0.12元。设共印调查问卷份:
(1)按甲种方式应收费多少元,按乙种方式应收费多少元(用含的代数式表示);
(2)若共需印刷500份调查问卷,通过计算说明选用哪种方式合算?
(3)印刷多少份调查问卷时,甲、乙两种方式收费一样多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题
(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;
(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A.
B.2 ﹣
C.2 ﹣
D.4 ﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是( )
A.△AEE′是等腰直角三角形
B.AF垂直平分EE'
C.△E′EC∽△AFD
D.△AE′F是等腰三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作中边上的高线”的尺规作图过程.
已知:.
求作:中边上的高线.
作法:如图,
①以点为圆心,的长为半径作弧,以点为圆心,的长为半径作弧,两弧在下方交于点;
②连接交于点.
所以线段是中边上的高线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵ , ,
∴点,分别在线段的垂直平分线上( )(填推理的依据).
∴垂直平分线段.
∴线段是中边上的高线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,点为边上的一个动点(不与点,及中点重合),连接,点关于直线的对称点为点,直线,交于点.
(1)如图1,当时,根据题意将图形补充完整,并直接写出的度数;
(2)如图2,当时,用等式表示线段,,之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( )
A.6
B.4
C.3
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com