精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( )

A.6
B.4
C.3
D.3

【答案】A
【解析】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,

∴∠CAB=30°,故AB=4,

∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,

∴AB=A′B′=4,AC=A′C,

∴∠CAA′=∠A′=30°,

∴∠ACB′=∠B′AC=30°,

∴AB′=B′C=2,

∴AA′=2+4=6.

故答案为:A.

根据含30角的直角三角形的边角关系得出AB的长,由旋转的性质得AB=A′B′=4,AC=A′C,根据等边对等角得出∠CAA′=∠A′=30°,进而得出∠ACB′=∠B′AC=30°,,根据等角对等边得出AB′=B′C=2,,从而得出AA的长。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的直径,∠EOD=72°,AE交⊙O于点B,且AB=OC,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.

1)甲、乙两个工厂每天各能加工多少件新产品?

2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费, 请你帮公司选择一种既省时又省钱的加工方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,
求证:AE2+AD2=2AC2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20154月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中, AB两点分别在x轴、y轴的正半轴上,且OB = OA=3.(1)、求点AB的坐标;(2)、已知点C(-22),求△BOC的面积;(3)、点P是第一象限角平分线上一点,若,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,在的外部作等边三角形的中点,连接并延长交于点,连接

(1)如图1,若,求的度数;

(2)如图2的平分线交于点,交于点,连接

补全图2

,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD平分∠BAC,要使△ABD≌△ACD,

(1)根据“SAS”需添加条件________

(2)根据“ASA”需添加条件________

(3)根据“AAS”需添加条件________

查看答案和解析>>

同步练习册答案