【题目】如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,
求证:AE2+AD2=2AC2 .
【答案】证明:连接BD,
∵△ACB和△ECD都是等腰直角三角形
∴∠ACB=∠ECD=90°,AC=BC,EC=DC,
∴∠ACE=∠BCD,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(SAS)
∴BD=AE,∠BDC=∠E,
∵∠E+∠CDE=90°,
∴∠BDC+∠CDE=90°,
即∠ADB=90°,
在Rt△ADB中,BD2+AD2=AB2,
∵AB2=2AC2,
∴AE2+AD2=2AC2.
【解析】连接BD,根据等腰直角三角形的性质得出∠ACB=∠ECD=90°,AC=BC,EC=DC,进而得出∠ACE=∠BCD,,然后利用SAS判断出△ACE≌△BCD,根据全等三角形的性质得出BD=AE,∠BDC=∠E,从而得出∠ADB=90°,然后利用勾股定理及等量代换得出结论。
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A.
B.2 ﹣
C.2 ﹣
D.4 ﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,点为边上的一个动点(不与点,及中点重合),连接,点关于直线的对称点为点,直线,交于点.
(1)如图1,当时,根据题意将图形补充完整,并直接写出的度数;
(2)如图2,当时,用等式表示线段,,之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是cm2 . (结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.
(1)求∠2的度数;
(2)FC与AD平行吗?为什么?
(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( )
A.6
B.4
C.3
D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,已知 , 两点的坐标分别为 , , 是线段 上一点(与 , 点不重合),抛物线 ( )经过点 , ,顶点为 ,抛物线 ( )经过点 , ,顶点为 , , 的延长线相交于点 .
(1)若 , ,求抛物线 , 的解析式;
(2)若 , ,求 的值;
(3)是否存在这样的实数 ( ),无论 取何值,直线 与 都不可能互相垂直?若存在,请直接写出 的两个不同的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;
(1)直接写出图中∠AOC的对顶角为 ,∠BOE的邻补角为 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com