【题目】已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.
【答案】
(1)解:∵直线y=kx+b经过点A(5,0),B(1,4),
∴ ,
解得 ,
∴直线AB的解析式为:y=﹣x+5;
(2)解:∵若直线y=2x﹣4与直线AB相交于点C,
∴ .
解得 ,
∴点C(3,2);
(3)解:根据图象可得x>3.
【解析】(1)用待定系数法求解即可;
(2)根据直线交点坐标就是两解析式组成的方程组的解,解方程组即可;
(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集,就是找C点右边直线自变量的取值范围。
【考点精析】本题主要考查了确定一次函数的表达式的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,已知中, , , ,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.
(1)如图1,当时,求EF的长;
(2)如图2,当点E在AC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;
(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若点,在数轴上对应的数为,,则称为点和之间的距离,记作.已知数轴上两点,对应的数分别为和,且满足,点为数轴上一动点,其对应的数为.
(1)若点到点和的距离相等,则点对应的数是_________.
(2)数轴上是否存在点,使?若存在,请求出的值;若不存在,请说明理由.
(3)当点以每秒1个单位长度的速度从原点向左运动时,点以每秒3个单位长度向左运动,点以每秒15个单位长度向左运动,若它们同时出发,几秒钟后点到点和的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为常分数,如: = =2+ =2 .我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如 , 这样的分式就是假分式;再如: , 这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如: =1- ;
解决下列问题:
(1)分式 是 分式(填“真分式”或“假分式”);
(2) 将假分式化为带分式;
(3)如果 x 为整数,分式 的值为整数,求所有符合条件的 x 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.
(1)甲、乙两个工厂每天各能加工多少件新产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费, 请你帮公司选择一种既省时又省钱的加工方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠1=∠2,∠C=∠D。
求证:∠A=∠F。
证明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代换),
∴DB∥EC( ),
∴∠DBC+∠C=1800(两直线平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代换),
∴DF∥AC( ,两直线平行),
∴∠A=∠F( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )
A. 10 B. 11 C. 12 D. 13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病,呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有_________人;
(2)扇形统计图中,扇形的圆心角度数是__________;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com