【题目】若点,在数轴上对应的数为,,则称为点和之间的距离,记作.已知数轴上两点,对应的数分别为和,且满足,点为数轴上一动点,其对应的数为.
(1)若点到点和的距离相等,则点对应的数是_________.
(2)数轴上是否存在点,使?若存在,请求出的值;若不存在,请说明理由.
(3)当点以每秒1个单位长度的速度从原点向左运动时,点以每秒3个单位长度向左运动,点以每秒15个单位长度向左运动,若它们同时出发,几秒钟后点到点和的距离相等?
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.
(1)求证:四边形AFCE是平行四边形.
(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗 ”若成立,请写出证明过程;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A.
B.2 ﹣
C.2 ﹣
D.4 ﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作中边上的高线”的尺规作图过程.
已知:.
求作:中边上的高线.
作法:如图,
①以点为圆心,的长为半径作弧,以点为圆心,的长为半径作弧,两弧在下方交于点;
②连接交于点.
所以线段是中边上的高线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵ , ,
∴点,分别在线段的垂直平分线上( )(填推理的依据).
∴垂直平分线段.
∴线段是中边上的高线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是( )
A.240°
B.360°
C.480°
D.540°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,点为边上的一个动点(不与点,及中点重合),连接,点关于直线的对称点为点,直线,交于点.
(1)如图1,当时,根据题意将图形补充完整,并直接写出的度数;
(2)如图2,当时,用等式表示线段,,之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,已知 , 两点的坐标分别为 , , 是线段 上一点(与 , 点不重合),抛物线 ( )经过点 , ,顶点为 ,抛物线 ( )经过点 , ,顶点为 , , 的延长线相交于点 .
(1)若 , ,求抛物线 , 的解析式;
(2)若 , ,求 的值;
(3)是否存在这样的实数 ( ),无论 取何值,直线 与 都不可能互相垂直?若存在,请直接写出 的两个不同的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com