精英家教网 > 初中数学 > 题目详情

【题目】已知:点E为AB边上的一个动点.
(1)如图1,若△ABC是等边三角形,以CE为边在BC的同侧作等边△DEC,连结AD.试比较∠DAC与∠B的大小,并说明理由;

(2)如图2,若△ABC中,AB=AC,以CE为底边在BC的同侧作等腰△DEC,且△DEC∽△ABC,连结AD.试判断AD与BC的位置关系,并说明理由;

(3)如图3,若四边形ABCD是边长为2的正方形,以CE为边在BC的同侧作正方形ECGF.
①试说明点G一定在AD的延长线上;
②当点E在AB边上由点B运动至点A时,点F随之运动,求点F的运动路径长.

【答案】
(1)解:∠DAC=∠B

理由如下:

∵△ABC和△DEC都是等边三角形

∴∠DCE=∠ACB=60°

∴∠BCE=∠ACD

在△BEC和△ADC中,

∴△BCE≌△ACD.

∴∠B=∠DAC


(2)解:AD∥BC

理由如下:

∵△ABC和△DEC都是等腰三角形,且△DEC∽△ABC

∵∠DCE=∠ACB,

∴∠DCA=∠ECB.

∴△DCA∽△ECB.

∴∠DAC=∠EBC=∠ACB.

∴AD∥BC


(3)解:①连结DG.

∵四边形ABCD和FECG都是正方形

∴BC=CD,CE=CG,∠BCD=∠ECG=90°.

∴∠BCE=∠DCG.

∴△BCE≌△DCG.

∴∠B=∠CDG=90°.

∵∠ADC=90°.

∴∠ADC+∠CDG=180°

∴点G一定在AD的延长线上.

②作FH⊥AG于点H.

∵∠BCE+ECD=90°,∠ECD+DCG=90°,

∴∠BCE=∠GCD.

∵∠GCD+∠CGD=90°,∠CGD+∠FGH=90°

∴∠FGH=∠GCD.

∴∠BCE=∠FGH=∠GCD.

在△FHG和△GDC和△EBC中,

∴△FHG≌△GDC≌△EBC,

∴FH=BE=DG,HG=BC,

∴AH=AG﹣GH=AD+DG﹣GH=BC+DG﹣BC=DG=FH,

∴△AFH是等腰直角三角形,

∴∠FAG=45°.

∴点F的运动路径长=AC= =2


【解析】(1)可观察后猜想两角相等,须证两角所在的三角形全等,即△BCE≌△ACD,得出∠B=∠DAC;(2)类比(1)的方法,观察图形,可猜想△DEC∽△ABC,进而证出△DCA∽△ECB,得出∠DAC=∠EBC=∠ACB,AD∥BC;(3)先研究起始位置A,由△FHG≌△GDC≌△EBC,可得△AFH是等腰直角三角形,F的运动方向为沿与AD夹角为45度方向移动,终点为F,点F的运动路径长=AC,利用勾股定理求出.

【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,四边形 OABC 的顶点 AC 分别在 x 轴和 y 轴上,顶点B 在第一象限,OA//CB

1)如图 1,若点 A(60)B(43),点 M y 轴上一点,且 SBCM SAOM ,求点 M的坐标;

2)如图 2,点 P x 轴上点 A 左边的一点,连接 PB,∠PBC 和∠PAB 的角平分线交于点D,求证:∠ABP+2ADB=180°

3)如图 3,点 P x 轴上点 A 左边的一点,点 Q 是射线 BC 上一点,连接 PBPQ,∠ABP和∠BQP 的平分线相交于点 E,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳(特别是二氧化碳)的排放量的一种生活方式.

1)如果用xL)表示耗油量,用ykg)表示开私家车的二氧化碳排放量,则yx之间的关系式可表示为___________

2)在上述关系式中,耗油量每增加1L,二氧化碳排放量增加________kg.当耗油量从10L增加到100L时,二氧化碳排放量从________kg增加到________kg

3)小颖家本月家居用电的耗电量约为90kwh、开私家车的耗油量约为70L、天然气使用量约20m、自来水使用量约6吨,请你计算一下小颖家本月这几项的二氧化碳排放总量;

4)你打算从哪些小事做起践行低碳生活?请直接写出两条.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分如图,在ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.

(1)求证:△AEB≌△CFD;
(2)若四边形EBFD是菱形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是边长为1的正方形ABCD的边AB上任意一点(不含A,B),过B,C,E三点的圆与BD相交于点F,与CD相交于点G,与∠ABC的外角平分线相交于点H.

(1)求证:四边形EFCH是正方形;
(2)设BE=x,△CFG的面积为y,求y与x的函数关系式,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称            

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.

(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

(4)若将图2中△ABC绕顶点B按顺时针方向旋转a度(0°<a<90°),得到△DBE,连接AD、DC,则∠DCB=      °,四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,线段ABx轴上点AB的坐标分别为(﹣10),(30),现同时将点AB分别向上平移2个单位,再向右平移1个单位,分别得到点AB的对应点CD,连接ACBDCD.得平行四边形ABDC

1)补全图形,直接写出点CD的坐标;

2)若在y轴上存在点M,连接MAMB,使SMAB=S四边形ABDC,求出点M的坐标.

3)若点P在直线BD上运动,连接PCPO.请画出图形,探索∠CPO、∠DCP、∠BOP的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MON = 50°OE 平分∠MON,点ABC分别是射线OMOEON上的动点(ABC不与点O重合),连接AC交射线OE于点D、设∠OAC = x°.


1)如图①,若AB//ON

①则∠ABO 的度数是________

②当∠BAD =ABD 时,x=_______;当∠BAD = BDA 时,x=________

2)如图②,若ABOE,则是否存在这样的x值,使得 ABD 中有一个角是另一个角的两倍.存在,直接写出x的值;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年某企业按餐厨垃圾处理费50元/吨、建筑垃圾处理费20元/吨的收费标准,共支付餐厨和建筑垃圾处理费7000元.从2016年元月起,收费标准上调为:餐厨垃圾处理费120元/吨,建筑垃圾处理费40元/吨.若该企业2016年处理的这两种垃圾数量与2015年相比没有变化,就要多支付垃圾处理费8600元.
(1)该企业2015年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2016年将上述两种垃圾处理总量减少到200吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2016年该企业最少需要支付这两种垃圾处理费共多少元?

查看答案和解析>>

同步练习册答案