精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,ACBC5AB5,三角形顶点在相互平行的三条直线L1L2L3上,且L2L3之间的距离为3,则L1L3之间的距离是_____

【答案】4

【解析】

如图作,AML3MBNL3N.只要证明ACM≌△CBNAAS),即可推出AMCN3,在RtNCB中,利用勾股定理即可解决问题;

解:如图作,AML3MBNL3N

ACBC5AB5

AC2+BC2AB2

∴∠ACB90°

∵∠AMC=∠BNC90°

∴∠ACM+BCN90°

∵∠BCN+CBN90°

∴∠ACM=∠CBN

∴△ACM≌△CBNAAS),

AMCN3

RtNCB中,BN4

故答案为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线 :y=2x+1与直线 :y=mx+4相交于点P(1,b)

(1)求b,m的值

(2)垂直于x轴的直线 x=a与直线 分别相交于C,D,若线段CD长为2,求a的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为一位旅行者在早晨8时从城市出发到郊外所走的路程单位:千米与时间单位:时的变量关系的图象.根据图象回答问题:

在这个变化过程中,自变量是______ ,因变量是______

时所走的路程是多少?他休息了多长时间?

他从休息后直至到达目的地这段时间的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,完成下列说理过程

如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°

求证:OD是∠AOC的平分线;

证明:如图,因为OE是∠BOC的平分线,

所以∠BOE=∠COE.(  )

因为∠DOE=90°

所以∠DOC+∠  =90°

且∠DOA+∠BOE=180°﹣∠DOE=  °.

所以∠DOC+∠  =∠DOA+∠BOE.

所以∠  =∠  .

所以OD是∠AOC的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是( )

A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AECD于点F,交BC的延长线于点E

1)求证:DCBE

2)连接BF,若BFAE,求证:△ADF≌△ECF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线MNx轴、y轴分别相交于B、A两点,OA,OB的长满足式子

(1)A,B两点的坐标;

(2)若点OAB的距离为,求线段AB的长;

3)在(2)的条件下,x轴上是否存在点P,使ΔABP使以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.

(1)求点C的坐标及a 的值;
(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3 . C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P作y轴的平行线,交CE于点F.
①求线段PF长的最大值;
②若PE=EF,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习整式乘法时,老师拿出三种型号的卡片,如图1A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为ab的长方形。

1)选取1A型卡片,2C型卡片,1B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:______________

2)若用图1中的8C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积

3)选取1A型卡片,3C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1S2,若S=S2-S1,则当ab满足_________时,S为定值,且定值为___________.

查看答案和解析>>

同步练习册答案