【题目】学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形。
(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:______________
(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积
(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2-S1,则当a与b满足_________时,S为定值,且定值为___________.
【答案】(1)a2+2ab+b2=(a+b)2;(2)75 cm2;(3)a=2b,a2-ab.
【解析】
(1)结合图形,直接由等积法可得完全平方和公式;
(2)结合图形,建立关于a,b的二元一次方程组,解方程组即可;
(3)设DG长为x,结合图形,用含x的式子分别表示出S1,S2,继而得到S的表达式,根据S为定值,与x无关,从而得到a,b的关系式及定值.
解:(1)A型卡片的面积为a2,B型卡片的面积为b2,C型卡片的面积为ab,
题中已经选择1张A型卡片,2张C型卡片,一张B型卡片,面积之和为a2+2ab+b2,由图可知,也正好拼成了一个边长为(a+b)的正方形,由此可以得到一个完全平方公式,故答案为:a2+2ab+b2=(a+b)2;
(2)由图可得关于a,b的二元一次方程
,
解得:,
S=ab=5×15=75 (cm2)
故每个C型长方形的面积为75 cm2
(3)设DG长为x,由图可知
S1=a[x-(a+b)]=ax-a2-ab
S2=2b(x-a)=2bx-2ab
S=S2-S1= 2bx-2ab-( ax-a2-ab)=(2b-a)x+a2-ab
由题意得,若S为定值,则S将不随x的变化而变化,
可知当2b-a=0时,即a=2b时,S= a2-ab为定值
故答案为:a=2b,a2-ab.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AC=BC=5,AB=5,三角形顶点在相互平行的三条直线L1,L2,L3上,且L2,L3之间的距离为3,则L1,L3之间的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下(单位:分):
甲:7,9,10,8,5,9;
乙:9,6,8,10,7,8
(1)请补充完整下面的成绩统计分析表:
平均分 | 方差 | 众数 | 中位数 | |
甲组 | 8 | 9 | ||
乙组 | 8 | 8 |
(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由. .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的正方形网格中
作出关于直线MN对称的;
若经过图形平移得到,当点A的坐标是时,请建立适当的直角坐标系,分别写出点,,的坐标.
【答案】(1)见解析;(2),,.
【解析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用A点坐标得出平面直角坐标系,进而得出各点坐标.
解:如图所示:,即为所求;
点,,.
【点睛】
此题主要考查了轴对称变换以及平移变换、根据点的坐标建立平面直角坐标系,正确得出对应点位置是解题关键.
【题型】解答题
【结束】
17
【题目】计算:;计算:;解方程组:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.
(1)a= ,b= ;
(2)直接写出、与x之间的函数关系式;
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
【答案】(1)6,8;(2),=;(3)A团有20人,B团有30人.
【解析】
试题(1)由函数图象,用购票款数除以定价的款数,得出a的值;用第11人到20人的购票款数除以定价的款数,得出b的值;
(2)利用待定系数法求正比例函数解析式求出,分x≤10与x>10,利用待定系数法求一次函数解析式求出与x的函数关系式即可;
(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.
试题解析:(1)由图象上点(10,480),得到10人的费用为480元,∴a=×10=6;
由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;
(2)设,∵函数图象经过点(0,0)和(10,480),∴,∴=48,∴;
0≤x≤10时,设,∵函数图象经过点(0,0)和(10,800),∴,∴=80,∴,x>10时,设,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴;
∴=;
(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,48n+80(50﹣n)=3040,解得n=30(不符合题意舍去),当n>10时,48n+64(50﹣n)+160=3040,解得n=20,则50﹣n=50﹣20=30.
答:A团有20人,B团有30人.
考点:1.一次函数的应用;2.分段函数;3.分类讨论;4.综合题.
【题型】解答题
【结束】
23
【题目】在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是A、B,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.
请判断下列各点中是平面直角坐标系中的平衡点的是______;填序号
,.
若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.
求m、b的值;
一次函数为常数与y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.
经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD.∠1=∠2,∠3=∠4,试说明 AD∥BE,请你将下面解答过程填写完整.
解:∵AB∥CD,
∴∠4= ( )
∵∠3=∠4
∴∠3= (等量代换)
∵∠1=∠2
∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .
∴∠3= ( )
∴AD∥BE( ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com