【题目】如图,直线MN与x轴、y轴分别相交于B、A两点,OA,OB的长满足式子
(1)求A,B两点的坐标;
(2)若点O到AB的距离为,求线段AB的长;
(3)在(2)的条件下,x轴上是否存在点P,使ΔABP使以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.
【答案】 (1) A(0,6)B(8,0);(2);(3)存在,(-8,0)、(-2,0)、(18,0).
【解析】
(1)根据非负数的性质可得OA=6、OB=8,即可求得A、B两点的坐标;(2)根据直角三角形面积的两种表示法即可求得AB的长;(3)分AB=B P1、AB=A P2、AB=B P3三种情况求点P的坐标.
(1)∵,
∴OA=6,OB=8,
∴A(0,6),B(8,0);
(2)∵,
∴AB=10;
(3)在x轴上存在点P,是使ΔABP使以AB为腰的等腰三角形,点P的位置如图所示,
①当AB=BP1时,P1的坐标为(18,0);②当AB=AP2时,P2的坐标为(-8,0);③当AB=BP3时,P3的坐标为(-2,0).
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课本1.4有这样一道例题:
问题4:用一根长22cm的铁丝:
(1)能否围成面积是30cm2的矩形?
(2)能否围成面积是32cm2的矩形?
据此,一位同学提出问题:“用这根长22cm的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AC=BC=5,AB=5,三角形顶点在相互平行的三条直线L1,L2,L3上,且L2,L3之间的距离为3,则L1,L3之间的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.
(1)求证:BM∥DN;
(2)求证:四边形MPNQ是菱形;
(3)矩形ABCD的边长AB与AD满足什么数量关系时四边形MPNQ为正方形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:
(1)请补充完成下面的成绩统计分析表:
平均分 | 方差 | 中位数 | 合格率 | 优秀率 | |
甲组 | 6.9 | 2.4 | 91.7% | 16.7% | |
乙组 | 1.3 | 83.3% | 8.3% |
(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,A,B,C,D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
(1)求证:∠BAC=∠CAD;
(2)如图②,若AB为⊙O的直径,AD=6,AB=10,求CE的长;
(3)在(2)的条件下,连接BC,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.
(1)a= ,b= ;
(2)直接写出、与x之间的函数关系式;
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
【答案】(1)6,8;(2),=;(3)A团有20人,B团有30人.
【解析】
试题(1)由函数图象,用购票款数除以定价的款数,得出a的值;用第11人到20人的购票款数除以定价的款数,得出b的值;
(2)利用待定系数法求正比例函数解析式求出,分x≤10与x>10,利用待定系数法求一次函数解析式求出与x的函数关系式即可;
(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.
试题解析:(1)由图象上点(10,480),得到10人的费用为480元,∴a=×10=6;
由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;
(2)设,∵函数图象经过点(0,0)和(10,480),∴,∴=48,∴;
0≤x≤10时,设,∵函数图象经过点(0,0)和(10,800),∴,∴=80,∴,x>10时,设,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴;
∴=;
(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,48n+80(50﹣n)=3040,解得n=30(不符合题意舍去),当n>10时,48n+64(50﹣n)+160=3040,解得n=20,则50﹣n=50﹣20=30.
答:A团有20人,B团有30人.
考点:1.一次函数的应用;2.分段函数;3.分类讨论;4.综合题.
【题型】解答题
【结束】
23
【题目】在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是A、B,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.
请判断下列各点中是平面直角坐标系中的平衡点的是______;填序号
,.
若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.
求m、b的值;
一次函数为常数与y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.
经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com