【题目】如图①,A,B,C,D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
(1)求证:∠BAC=∠CAD;
(2)如图②,若AB为⊙O的直径,AD=6,AB=10,求CE的长;
(3)在(2)的条件下,连接BC,求 的值.
【答案】
(1)证明:连结OC,如图①,
∵CE为切线,
∴OC⊥CE,
∵CE∥BD,
∴OC⊥BD,
∴ ,
∴∠BAC=∠CAD;
(2)解:如图②,连结OC交BD于E,
由(1)得OC⊥BD,则BE=DE,
∵AB为直径,
∴∠D=90°,
∴BD= =8,
∴BE= BD=4,
在Rt△OBE中,OE= =3,
∵BE∥CE,
∴△OBE∽△OCE,
∴ ,即 ,
∴CE= ;
(3)解:∵OE=3,OC=5,
∴CE=5﹣3=2,
∵ ,
∴∠CDB=∠CAB,
∵tan∠CBE= = ,
∴tan∠CAB=tan∠CBE= ,
∵tan∠CAB= ,
∴ = .
【解析】(1)根据切线的性质和已知条件,得到OC⊥BD,根据垂径定理得到两弧相等,根据在同圆中相等的弧所对的圆周角相等,得到∠BAC=∠CAD;(2)由(1)知OC⊥BD,BE=DE;AB为直径,得到∠D=90°,根据勾股定理求出BD、BE、OE的长,由BE∥CE,得到△OBE∽△OCE,得到比例,求出CE的值;(3)根据在同圆中相等的弧所对的圆周角相等,得到∠CDB=∠CAB,由三角函数tan∠CBE的值,求出tan∠CAB=tan∠CBE的值,求出的值.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)
(1)[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A, B,C三点的圆上吗?
(2)我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在圆O外,要么在圆O内,以下该同学的想法说明了点D不在圆O外。
请结合图④证明点D也不在⊙O外.
[结论]综上可得结论:如图②,如果∠ACB=∠ADB=a(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:点A、B、C、D四点共圆。
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE CD,延长CD交BE于点F,
图⑤
①求证:点B、C、A、F四点共圆;②求证:BF=EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是( )
A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线MN与x轴、y轴分别相交于B、A两点,OA,OB的长满足式子
(1)求A,B两点的坐标;
(2)若点O到AB的距离为,求线段AB的长;
(3)在(2)的条件下,x轴上是否存在点P,使ΔABP使以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.
(1)求证:△BCD是等腰三角形;
(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求点C的坐标及a 的值;
(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3 . C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P作y轴的平行线,交CE于点F.
①求线段PF长的最大值;
②若PE=EF,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是( )
A. 10,7 B. 7,7 C. 9,9 D. 9,7
【答案】D
【解析】试题根据众数与中位数的定义分别进行解答即可.
解:由条形统计图给出的数据可得:9出现了6次,出现的次数最多,则众数是9;
把这组数据从小到达排列,最中间的数是7,则中位数是7.
故选D.
考点:众数;条形统计图;中位数.
【题型】单选题
【结束】
4
【题目】点和都在直线上,且,则与的关系是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线:与直线:交于点,则______.
【答案】-1
【解析】
将点A的坐标代入两直线解析式得出关于m和b的方程组,解之可得.
解:由题意知,
解得,
故答案为:.
【点睛】
本题主要考查两直线相交或平行问题,解题的关键是掌握两直线的交点坐标必定同时满足两个直线解析式.
【题型】填空题
【结束】
11
【题目】如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com