【题目】如图,直线l1:y=x+12与x轴、y轴分别交于A、B两点,直线l2与x轴、y轴分别交于C、B两点,且AB:BC=3:4.
(1)求直线l2的解析式,并直接判断△ABC的形状(不需说明理由);
(2)如图1,P为直线l1上一点,横坐标为12,Q为直线l2上一动点,当PQ+CQ最小时,将线段PQ沿射线PA方向平移,平移后P、Q的对应点分别为P'、Q',当OQ'+BQ'最小时,求点Q'的坐标;
【答案】(1),△ABC为直角三角形;(2)Q'( )
【解析】
(1)根据l1求出A,B的坐标,再根据AB:BC=3:4.得出C点坐标,即可求出l2的解析式与△ABC的形状;(2)由题意知当P、Q、M三点共线,且PM⊥x轴时,PQ+CQ最小,利用直线平移的性质与Q点坐标求出l3的解析式,作点B(0,12)关于l3的对称点B',则B'(24,﹣6),连接OB',与直线l3的交点即为所求点Q',再联立l3与直线OB'即可求出Q'的坐标.
解:(1)由l1:y=x+12得B(0,12),A(-9,0)
∴AB=15,
∵AB:BC=3:4.
∴BC=20,故C(16,0)
故求得l2:,
∵AB=15,BC=20,AC= 9+16=25,故AB2+BC2=AC2,
∴△ABC为直角三角形.
(2)当P、Q、M三点共线,且PM⊥x轴时,PQ+CQ最小,
∴Q(12,3)
平移过程中,点Q'在直线l3上移动,
∵l3∥l1且l3经过点Q(12,3),
∴l3:
作点B(0,12)关于l3的对称点B',则B'(24,﹣6),连接OB',与直线l3的交点即为所求点Q',
∵直线OB':,
∴解得,
∴Q'().
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=90°.
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)
①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC.
(2)试判断AD、CD的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP′,连接DP′,则DP′的最小值是( )
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点E在AB上,以AE为直径的⊙O经过点D.
(1)求证:直线BC是⊙O的切线;
(2)若∠B=30°,AC=3,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三个质地、大小都相同的小球分别标上数字2,-2,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).
(1)求这个点(a,b)恰好在函数y=-x的图像上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)
(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,b)恰好在函数y=-x的图像上的概率是 (请用含n的代数式直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于二次函数y=-x2-2x+3说法正确的是( )
A. 当时,函数最大值4
B. 当时,函数最大值2
C. 将其图象向上平移3个单位后,图象经过原点
D. 将其图象向左平移3个单位后,图象经过原点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0).B(4,0),C(0,2)三点,直线y=kx+t经过B.C两点,点D是抛物线上一个动点,过点D作y轴的平行线,与直线BC相交于点E.
(1)求直线和抛物线的解析式;
(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D的坐标;
(3)点D在运动过程中,若使O.C.D.E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com