精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△ABC中,AEBF是角平分线,它们相交于点OAD是高,BAC=50°C=70°,求DAEAOB的度数.

【答案】DAE=5°AOB=125°

【解析】

DAE=BAD-BAE,根据题意分别求出∠BAD和∠BAE的度数求解即可;先求出∠BAE、∠ABF的度数,在△ABO中根据三角形内角和定理,求AOB的度数即可.

解:在△ABC中,

∵∠BAC=50°,∠C=70°

∴∠ABC=60°

∴∠BAD=30°

又∵AE平分∠BAC

∴∠BAE=BAC=25°

∴∠DAE=BAD-BAE=30°-25°=5°

BF平分∠ABC

∴∠ABF=ABC=30°

∴∠AOB=180°-BAE-ABF=180°-25°-30°=125°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)阅读理解:

如图①,在ABC中,若AB=8AC=4,求BC边上的中线AD的取值范围是   

2)问题解决:如图②,在ABCDBC边上的中点,DEDF于点DDEAB于点EDFAC于点F,连接EF,求证:BE+CFEF

3)问题拓展:如图③,在四边形ABCD中,∠B+D=180°CB=CD,∠BCD=140°,以C为顶点作一个70角的两边分别交ABADEF两点,连接EF,探索线段BEDFEF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1CE平分∠ACDAE平分∠BAC∠EAC+∠ACE=90°

1)请判断ABCD的位置关系,并说明理由;

2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD.当直角顶点E点移动时,问∠BAE∠MCD是否存在确定的数量关系?并说明理由;

3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP∠BAC有何数量关系?直接写出结论,其数量关系为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在数轴上点A,点B对应的数分别是6,﹣6,∠DCE90°(点C与点O重合,点D在数轴的正半轴上)

1)如图1,若CF平分∠ACE,则∠AOF   度;点A与点B的距离= 

2)如图2,将∠DCE沿数轴的正半轴向右平移t0t3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCFα

t1时,α   ;点B与点C的距离= 

猜想BCEα的数量关系,并说明理由;

3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t0t3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCFα,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t0t3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1β,若αβ满足β|20°,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;
(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线l分别交ABCDEF两点,且ABCD

1 说明:∠1=∠2

2 如图2,点MNABCD之间,且在直线l左侧,若EMN+∠FNM=260°

求:AEM+∠CFN的度数;

如图3,若EP平分AEMFP平分CFN,求P的度数;

3 如图4∠2=80°,点G在射线EB上,点HAB上方的直线l上,点Q是平面内一点,连接QGQH,若AGQ=18°FHQ=24°,直接写出GQH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC底边BC的长为4cm,面积为12cm,腰AB的垂直平分线交AB于点E,若点DBC边的中点,M为线段EF上一动点,则△BDM的周长最小值为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( ﹣2)0+( 1﹣2cos30°﹣| ﹣2|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中点、平行线、等腰直角三角形、等边三角形都是常见的几何图形!
(1)如图1,若点D为等腰直角三角形ABC斜边BC的中点,点E,F分别在AB、AC边上,且∠EDF=90°,连接AD、EF,当BC=5 ,FC=2时,求EF的长度;

(2)如图2,若点D为等边三角形ABC边BC的中点,点E,F分别在AB,AC边上,且∠EDF=90°;M为EF的中点,连接CM,当DF∥AB时,证明:3ED=2MC;

(3)如图3,若点D为等边三角形ABC边BC的中点,点E,F分别在AB,AC边上,且∠EDF=90°;当BE=6,CF=0.8时,直接写出EF的长度.

查看答案和解析>>

同步练习册答案