精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,∠ABC=∠BCD90°AB1AEAD,交BC于点EEA平分∠BED

1CD的长是_____

2)当点FAC中点时,四边形ABCD的周长是_____

【答案】2 5+

【解析】

(1)延长DACB交于点H,由“ASA”可证,可得,由平行得相似,依据相似的性质即可求解;

(2)先证明ADCE四点共圆,因为FAC中点,依据垂径定理,得到DFAC的中垂线,依据线段的垂直平分线的性质可求得AD的长度,作H,可证四边形ABCH是矩形,依据矩形的性质,结合线段长度,可得的中垂线,由此可得AC的长度,在三角形ABC中,依据勾股定理可求得BC的长度,只需把各边相加即可得到四边形ABCD的周长.

解:(1)如图1中,延长DACB交于点H

EA平分∠BED

∴∠AEH=∠AED,且AEAE,∠EAH=∠EAD90°

∴△ADE≌△AHEASA

AHAD

∵∠ABC=∠BCD90°

ABCD

∴△ABH∽△DCH,

,且AB1AHADHD

CD2

2)如图2中,作AHCDH

∵∠DAE=∠DCE90°

ADCE四点共圆,设圆心为O,则点O是线段DE的中点,

又∵AFCF

DEAC

DADC

∵∠ABC=∠BCH=∠AHC90°

∴四边形ABCH是矩形,

CHAB1

CD2

CHHD1

又∵AHCD

ADAC

ADCDAC2

四边形ABCD的周长为

故答案为:(1)2;(2)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(10),点D的坐标为(02),延长CBx轴于点A1,作正方形A1B1C1C;延长C1B1x轴于点A2,作正方形A2B2C2C1按这样的规律进行下去,第1个正方形的面积为___;第4个正方形的面积为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.

1)求的函数关系式(不要求写出自变量的取值范围);

2)要使当天销售利润不低于240元,求当天销售单价所在的范围;

3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线经过两点,与x轴交于另一点B

求抛物线的解析式;

已知点在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;

如图2,若抛物线的对称轴为抛物线顶点与直线BC相交于点FM为直线BC上的任意一点,过点M交抛物线于点N,以EFMN为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,在平面直角坐标系中,直线分别交x轴、y轴于点AB,⊙O的半径为个单位长度,点P为直线y=﹣x+6上的动点,过点P作⊙O的切线PCPD,切点分别为CD,且PCPD

1)判断四边形OCPD的形状并说明理由.

2)求点P的坐标.

3)若直线y=﹣x+6沿x轴向左平移得到一条新的直线y1=﹣x+b,此直线将⊙O的圆周分得两段弧长之比为13,请直接写出b的值.

4)若将⊙O沿x轴向右平移(圆心O始终保持在x轴上),试写出当⊙O与直线y=﹣x+6有交点时圆心O的横坐标m的取值范围.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y1x2+bx+cy2x2+cx+bbc)的图象相交于点A,分别与y轴相交于点CB,连接ABAC

1)过点(10)作直线l平行于y轴,判断点A与直线l的位置关系,并说明理由.

2)当AC两点是二次函数y1x2+bx+c图象上的对称点时,求b的值.

3)当ABC是等边三角形时,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人从A地出发去相距1800米的B地,甲出发1.5分钟后乙再出发,在中途乙追上甲,追上甲后,乙发现有东西忘带了,于是以原来1.2倍的速度返回,甲则继续以原速度前行,乙返回A地后取东西花了2分钟,取完东西后立即以返回时的速度追甲,甲达到B地以后立即返回,并与乙在途中相遇,设甲乙两人之间的距离为y(),甲出发的时间为x(分钟)yx的关系如图所示,则当甲乙两人第二次相遇时,两人距B地的距离为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°AB=3cmAC=6cm,将ABC绕点C逆时针旋转90°后得到A1B1C,再将A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2AC相交于点D

1)判断四边形A1A2B2B1的形状,并说明理由;

2)求A2CD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案