【题目】如图,四边形ABCD中,∠ABC=∠BCD=90°,AB=1,AE⊥AD,交BC于点E,EA平分∠BED.
(1)CD的长是_____;
(2)当点F是AC中点时,四边形ABCD的周长是_____.
【答案】2 5+
【解析】
(1)延长DA,CB交于点H,由“ASA”可证≌,可得,由平行得相似,依据相似的性质即可求解;
(2)先证明A,D,C,E四点共圆,因为F是AC中点,依据垂径定理,得到DF是AC的中垂线,依据线段的垂直平分线的性质可求得AD的长度,作于H,可证四边形ABCH是矩形,依据矩形的性质,结合线段长度,可得是的中垂线,由此可得AC的长度,在三角形ABC中,依据勾股定理可求得BC的长度,只需把各边相加即可得到四边形ABCD的周长.
解:(1)如图1中,延长DA,CB交于点H,
∵EA平分∠BED,
∴∠AEH=∠AED,且AE=AE,∠EAH=∠EAD=90°,
∴△ADE≌△AHE(ASA)
∴AH=AD,
∵∠ABC=∠BCD=90°,
∴AB∥CD,
∴△ABH∽△DCH,
∴,且AB=1,AH=AD=HD,
∴CD=2,
(2)如图2中,作AH⊥CD于H,
∵∠DAE=∠DCE=90°,
∴A,D,C,E四点共圆,设圆心为O,则点O是线段DE的中点,
又∵AF=CF,
∴DE⊥AC,
∴DA=DC,
∵∠ABC=∠BCH=∠AHC=90°,
∴四边形ABCH是矩形,
∴CH=AB=1,
∵CD=2,
∴CH=HD=1,
又∵AH⊥CD,
∴AD=AC,
∴AD=CD=AC=2,
∴,
四边形ABCD的周长为.
故答案为:(1)2;(2).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第1个正方形的面积为___;第4个正方形的面积为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.
(1)求与的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线经过、两点,与x轴交于另一点B.
求抛物线的解析式;
已知点在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
如图2,若抛物线的对称轴为抛物线顶点与直线BC相交于点F,M为直线BC上的任意一点,过点M作交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,在平面直角坐标系中,直线分别交x轴、y轴于点A、B,⊙O的半径为个单位长度,点P为直线y=﹣x+6上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,且PC⊥PD.
(1)判断四边形OCPD的形状并说明理由.
(2)求点P的坐标.
(3)若直线y=﹣x+6沿x轴向左平移得到一条新的直线y1=﹣x+b,此直线将⊙O的圆周分得两段弧长之比为1:3,请直接写出b的值.
(4)若将⊙O沿x轴向右平移(圆心O始终保持在x轴上),试写出当⊙O与直线y=﹣x+6有交点时圆心O的横坐标m的取值范围.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y1=x2+bx+c与y2=x2+cx+b(b<c)的图象相交于点A,分别与y轴相交于点C,B,连接AB、AC.
(1)过点(1,0)作直线l平行于y轴,判断点A与直线l的位置关系,并说明理由.
(2)当A、C两点是二次函数y1=x2+bx+c图象上的对称点时,求b的值.
(3)当△ABC是等边三角形时,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人从A地出发去相距1800米的B地,甲出发1.5分钟后乙再出发,在中途乙追上甲,追上甲后,乙发现有东西忘带了,于是以原来1.2倍的速度返回,甲则继续以原速度前行,乙返回A地后取东西花了2分钟,取完东西后立即以返回时的速度追甲,甲达到B地以后立即返回,并与乙在途中相遇,设甲乙两人之间的距离为y(米),甲出发的时间为x(分钟),y与x的关系如图所示,则当甲乙两人第二次相遇时,两人距B地的距离为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=3cm,AC=6cm,将△ABC绕点C逆时针旋转90°后得到△A1B1C,再将△A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2与AC相交于点D.
(1)判断四边形A1A2B2B1的形状,并说明理由;
(2)求△A2CD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com