如图,▱ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE.
(1)求证:△AED≌△DCA;
(2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.
![]()
考点:
切线的性质;全等三角形的判定与性质;平行四边形的性质;扇形面积的计算.
分析:
(1)由四边形ABCD是平行四边形,AB=AE,易证得四边形AECD是等腰梯形,即可得AC=DE,然后由SSS,即可证得:△AED≌△DCA;
(2)由DE平分∠ADC且与⊙A相切于点E,可求得∠EAD的度数,继而求得∠BAE的度数,然后由扇形的面积公式求得阴影部分(扇形)的面积.
解答:
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∴四边形AECD是梯形,
∵AB=AE,
∴AE=CD,
∴四边形AECD是等腰梯形,
∴AC=DE,
在△AED和△DCA中,
,
∴△AED≌△DCA(SSS);
(2)解:∵DE平分∠ADC,
∴∠ADC=2∠ADE,
∵四边形AECD是等腰梯形,
∴∠DAE=∠ADC=2∠AED,
∵DE与⊙A相切于点E,
∴AE⊥DE,
即∠AED=90°,
∴∠ADE=30°,
∴∠DAE=60°,
∴∠DCE=∠AEC=180°﹣∠DAE=120°,
∵四边形ACD是平行四边形,
∴∠BAD=∠DCE=120°,
∴∠BAE=∠BAD﹣∠EAD=60°,
∴S阴影=
×π×22=
π.
点评:
此题考查了切线的性质、全等三角形的判定与性质、等腰梯形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.
科目:初中数学 来源:2013年初中毕业升学考试(新疆区、兵团卷)数学(解析版) 题型:解答题
如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延
长线分别交于点E、F.
![]()
(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.
查看答案和解析>>
科目:初中数学 来源:2014届贵州省毕节地区金沙县八年级上学期期末考试数学试卷(解析版) 题型:解答题
如图,▱ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,BC=
.
(1)AC与BD有什么位置关系?为什么?
(2)四边形ABCD是菱形吗?为什么?
![]()
查看答案和解析>>
科目:初中数学 来源:2013年初中毕业升学考试(福建漳州卷)数学(解析版) 题型:解答题
如图,▱ABCD中,E,F是对角线BD上两点,且BE=DF.
(1)图中共有 对全等三角形;
(2)请写出其中一对全等三角形: ≌ ,并加以证明.
![]()
查看答案和解析>>
科目:初中数学 来源:2013年初中毕业升学考试(湖北十堰卷)数学(解析版) 题型:填空题
如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=
,则AB的长是
.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com