【题目】已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.
(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长.
【答案】(1)证明见解析(2)3.6
【解析】分析:(1)要想证PA是⊙O的切线,只要连接OA,求证∠OAP=90°即可;
(2)先由切线长定理可知BF=AF,再在Rt△BCE中根据勾股定理求出CE,最后由切割线定理求出AE的长.
详解:(1)证明:连接AB,OA,OF;
∵F是BE的中点,
∴FE=BF.
∵OB=OC,
∴OF∥EC.
∴∠C=∠POF.
∴∠AOF=∠CAO.
∵∠C=∠CAO,
∴∠POF=∠AOF.
∵BO=AO,OF=OF,
∴△OAF≌OBF,
∴∠OAP=∠EBC=90°.
∴PA是⊙O的切线.
(2)解:∵BE是⊙O的切线,PA是⊙O的切线,
∴BF=AF=3,
∴BE=6.
∵BC=8,∠CBE=90°,
∴CE=10.
∵BE是⊙O的切线,
∴EB2=AEEC.
∴AE=3.6.
科目:初中数学 来源: 题型:
【题目】定义:数x、y、z中较大的数称为max{x,y,z}.例如max{﹣3,1,﹣2}=1,函数y=max{﹣t+4,t,}表示对于给定的t的值,代数式﹣t+4,t,中值最大的数,如当t=1时y=3,当t=0.5时,y=6.则当t=_________时函数y的值最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上从左到右有三个点,点对应的数是10,.
(1)点对应的数是________,点对应的数是________.
(2)若数轴上有一点,且,则点表示的数是什么?
(3)动点从出发,以每秒4个单位长度的速度向终点移动,同时,动点从点出发,以每秒1个单位长度的速度向终点移动,设移动时间为秒. 当点和点间的距离为8个单位长度时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( ).
A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线
B.到点距离等于的点的轨迹是以点为圆心,半径长为的圆
C.到直线距离等于的点的轨迹是两条平行于且与的距离等于的直线
D.等腰三角形的底边固定,顶点的轨迹是线段的垂直平分线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有两点、,点对应的数为-12,点在点的右边,且距离点16个单位,点为数轴上一动点,其对应的数为.
(1)若点到点,的距离相等,求点对应的数;
(2)是否存在这样的点,使点到点,的距离之和为20?若存在,请求出的值;若不存在,请说明理由?
(3)点是数轴上另一个动点,动点,分别从,同时出发,点以每秒6个单位长度的速度沿数轴向右匀速运动,点以每秒4个单位长度的速度沿数轴向左匀速运动,点为的中点,点在线段上,且,设运动时间为秒.
①分别求数轴上点,表示的数(用含的式子表示);
②为何值时,,之间的距离为10?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于各地雾霾天气越来越严重,2018年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B类:少放烟花爆竹;C类:使用电子鞭炮;D类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并将对100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用电子鞭炮”的学生有( )
A. 900名 B. 1050名 C. 600名 D. 450名
【答案】D
【解析】分析:用全校学生的人数乘以“使用电子鞭炮”的百分比即可求出答案.
详解:100名学生中“使用电子鞭炮”的学生有人,“使用电子鞭炮”的百分比为:
全校“使用电子鞭炮”的学生有:人.
故选D.
点睛:考查用样本估计总体,从条形统计图中得到“使用电子鞭炮”的学生人数是解题的关键.
【题型】单选题
【结束】
9
【题目】如图,在□ABCD中,E、F分别为BC、AD的中点,AE、CF分别交BD于点M、N,则四边形 AMCN与□ABCD的面积比为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为直线AB上一点,过点O作射线OC,将一直角三角板按图中所示的方式摆放(∠MON=900)
探究一:将图①中的三角板绕点0顺时针方向旋转一定的角度得到图②,使边OM恰好平分∠BOC。若∠BOC=500,ON是否平分∠A0C? 请说明理由;
探究二:将图①中的三角板绕点O时针旋转一定的角度得到图③,
(1)使边ON在∠BOC的内部,如果∠BOC=600,则∠BOM与∠CON之间存在怎样的数量关系?请说明理由。
(2)使边ON在∠BOC的内部,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE= ;
(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知线段,,线段在线段上运动,、分别是、的中点.
(1)若,则______;
(2)当线段在线段上运动时,试判断的长度是否发生变化?如果不变请求出的长度,如果变化,请说明理由;
(3)我们发现角的很多规律和线段一样,如图②已知在内部转动,、分别平分和,则、和有何数量关系,请直接写出结果不需证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com