精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.

(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;
(2)当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段CD的长度;如果不存在,请说明理由.

【答案】
(1)

解:DE=BE.理由如下:

∵△ADE为等边三角形,

∴AD=DE=AE,∠AED=60°.

∵∠ABC=30°,∠AED=∠ABC+∠EAB,

∴∠EAB=60°﹣30°=30°,

∴∠ABC=∠EAB,

∴EB=AE,

∴EB=DE;


(2)

解:如图,

过点E作EF⊥AB,垂足为F,

在△ABC中,∠ABC=30°,

∴∠CAB=60°,

∴∠DAE=∠CAB,

∴∠DAE﹣∠CAE=∠BAC﹣∠CAE,

则∠CAD=∠EAF.

又∵AD=AE,∠ACD=∠AFE,

∴△ADC≌△AEF,

∴AC=AF.

在△ABC中,∠ABC=30°,

∴AC= AB,

∴AF=BF,

∴EA=EB,

∴DE=EB;


(3)

解:如图,

∵四边形ACDE是梯形,∠ACD=90°,

∴∠CAE=90°.

∵∠CAE=∠CAD+∠EAD,

又∵在正三角形ADE中,∠EAD=60°,

∴∠CAD=30°.

在直角三角形ACD中,AC=3,∠CAD=30°,

由勾股定理可得CD=

同理可得:若点D与点B重合,AC平行DE,此时CD=3

综上所述:若AE∥CD,CD= ;若点D与点B重合,此时CD=3


【解析】(1)利用等边三角形的性质以及等腰三角形的判定解答即可;(2)过点E作EF⊥AB,垂足为F,证得△ADC≌△AEF,结合直角三角形中30度的角所对的直角边是斜边的一半解决问题;(3)从A、C、D、E为顶点的梯形的性质入手,逐步找出解决问题的方案.
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°),还要掌握含30度角的直角三角形(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,平行四边形ABCD的周长是26cm,对角线ACBD相交于点O, AC⊥AB,EBC的中点,△AOD的周长比△AOB的周长多3cm,则AE =_____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在纸面上有一数轴(如图),折叠纸面.

(1)若表示﹣1的点与表示3的点重合,回答以下问题:

①表示5的点与表示数_________的点重合;

②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?

(2)若点D表示的数为x,则当x为_______时,|x+1|与|x﹣2|的值相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包果树若干亩,今年投资元,收获水果总产量为千克.此水果在市场上每千克售元,在果园直接销售每千克售.该农户将水果拉到市场出售平均每天出售千克,需人帮忙,每人每天付工资元,农用车运费及其他各项税费平均每天元.

分别用含的代数式表示两种方式出售水果的收入.

元,元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.

该农户加强果园管理,力争到明年纯收入达到元,而且该农户采用了中较好的出售方式出售,那么纯收入增长率是多少(纯收入总收入-总支出)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AD=2ABFAD的中点,作CEAB,垂足E在线段AB上(E不与A、B重合),连接EFCF,则下列结论中一定成立的是 ( )

①∠DCF=BCDEF=CF④∠DFE=4AEF

A. ①②③④ B. ①②③ C. ①② D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:直线与双曲线交于A.B两点,且点A的横坐标为4, 若双曲线上一点C的纵坐标为8,连接AC.

(1)填空: k的值为_______; B的坐标为___________;C的坐标为___________.

(2)直接写出关于的不等式的解集.

(3)求三角形AOC的面积

(4) 若在x轴上有点My轴上有点N且点M.N.A.C四点恰好构成平行四边形,直接写出点M.N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】福鼎市南溪水库的警戒水位是,以下是南溪水库管理处七月份某周监测到的水位变化情况,上周末恰好达到警戒水位(正数表示比前一天水位高,负数表示比前一天水位低).

星期

水位变化

星期四的水位是多少?

从这周一到周日哪天的水位是最高的?

以警戒水位为零点,用折线图表表示本周水位情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示. 设点A,B,C所对应数的和是p.

(1)若以B为原点,则点A,C所对应的数为 ,p的值为 若以C为原点,p 的值为

(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点FCE平分∠BCD,交AD于点EAB=6EF=2,则BC长为( )

A. 10 B. 8 C. 14 D. 12

查看答案和解析>>

同步练习册答案