【题目】已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.
(1)如图1,若点D是AC中点,连接PC.
①写出BP,BD的长;
②求证:四边形BCPD是平行四边形.
(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.
【答案】
(1)
解:①在Rt△ABC中,∵BC=2,AC=4,
∴AB= =2 ,
∵AD=CD=2,
∴BD= =2 ,
由翻折可知,BP=BA=2 .
②如图1中,
∵△BCD是等腰直角三角形,
∴∠BDC=45°,
∴∠ADB=∠BDP=135°,
∴∠PDC=135°﹣45°=90°,
∴∠BCD=∠PDC=90°,
∴DP∥BC,∵PD=AD=BC=2,
∴四边形BCPD是平行四边形.
(2)
如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.
设BD=AD=x,则CD=4﹣x,
在Rt△BDC中,∵BD2=CD2+BC2,
∴x2=(4﹣x)2+22,
∴x= ,
∵DB=DA,DN⊥AB,
∴BN=AN= ,
在Rt△BDN中,DN= = ,
由△BDN∽△BAM,可得 = ,
∴ = ,
∴AM=2,
∴AP=2AM=4,
由△ADM∽△APE,可得 = ,
∴ = ,
∴AE= ,
∴EC=AC﹣AE=4﹣ = ,
易证四边形PECH是矩形,
∴PH=EC= .
【解析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22 , 推出x= ,推出DN= = ,由△BDN∽△BAM,可得 = ,由此求出AM,由△ADM∽△APE,可得 = ,由此求出AE= ,可得EC=AC﹣AE=4﹣ = 由此即可解决问题.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为( )
A.12
B.10
C.8
D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线相交于点O,AC=2,BD=2 ,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2 , 直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与 交于点D,以O为圆心,OC的长为半径作 交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为 . (结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= S矩形ABCD , 则点P到A、B两点距离之和PA+PB的最小值为( )
A.
B.
C.5
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.
(1)求证:四边形AECD为平行四边形;
(2)连接CO,求证:CO平分∠BCE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=ax与反比例函数y= (x>0)的图象交于点M( , ).
(1)求这两个函数的表达式;
(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.
(3)如图2,点P是反比例函数y= (x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m> 时,是否存在点P,使得四边形PEGH为正方形?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.
(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;
(2)求三位同学中至少有一人抽到自己制作卡片的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com