【题目】如图,一段抛物线:,记为,它与轴交于两点,:将绕旋转得到,交轴于:将绕旋转得到,交轴于.过抛物线,顶点的直线与,,围成的如图中的阴影部分,那么该面积为_________.
【答案】
【解析】
先求出点A1、A2、A3的坐标,进一步可求出抛物线C1的顶点F、抛物线C2的顶点H、抛物线C3的顶点G的坐标,由题意可判断F、A1、H三点共线、H、A2、G三点共线,再根据抛物线的对称性可得:S阴影=S△FGH,继而可得结果.
解:对于抛物线C1:,当y=0时,,所以,∴点A1的坐标为(3,0);
由题意:将绕旋转得到,交轴于,将绕旋转得到,交轴于,∴点A2的坐标为(6,0),点A3的坐标为(9,0);
设抛物线C1的顶点为F,抛物线C2的顶点为H,抛物线C3的顶点为G,则F、H、G的坐标分别为()、()、(),
连接A1F、A1H,如图,根据题意可知F、A1、H三点共线,同理H、A2、G三点共线,
∴由抛物线的对称性可得:S阴影=S△FGH=.
故答案为.
科目:初中数学 来源: 题型:
【题目】在一次数学探究活动课中,某同学有一块矩形纸片ABCD,已知AD=15,AB=9,M为线AD上的一个动点,将△ABM沿BM折叠得到△MBN,若△NBC是直角三角形,则AM长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】晓东在解一元二次方程时,发现有这样一种解法:
如:解方程.
解:原方程可变形,得
.
,
,
直接开平方并整理,得,.
我们称晓东这种解法为“平均数法”.
(1)下面是晓东用“平均数法”解方程时写的解题过程.
.
,
.
直接开平方并整理,得,.
上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.
(2)请用“平均数法”解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.
(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;
(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l:y=kx+4与抛物线y=x2交于点A(x1,y1),B(x2,y2).
(1)求:;的值.
(2)过点(0,-4)作直线PQ∥x轴,且过点A、B分别作AM⊥PQ于点M,BN⊥PQ于点N,设直线l:y=kx+4交y轴于点F.求证:AF=AM=4+y1.
(3)证明:+为定值,并求出该值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.
(1)求抛物线的解析式及点的坐标;
(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;
(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为秒.
①若与相似,请直接写出的值;
②能否为等腰三角形?若能,求出的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于题目:“如图1,平面上,正方形内有一长为、宽为的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长,再取最小整数.
甲:如图2,思路是当为矩形对角线长时就可移转过去;结果取.
乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.
丙:如图4,思路是当为矩形的长与宽之和的倍时就可移转过去;结果取.
下列正确的是( )
A.甲的思路错,他的值对
B.乙的思路和他的值都对
C.甲和丙的值都对
D.甲、乙的思路都错,而丙的思路对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com