精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a-2(a≠0)与x轴交于A,B两点(点A在点B左侧).

(1)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示).

(2)是否存在这样的非零实数a,使得AB=2?若存在,求出a的值;若不存在,请说明理由.

(3)AB≤4时,求实数a的取值范围.

【答案】(1)①对称轴为直线②顶点的纵坐标为;(2)这样的a值不存在;(3)a<-2a≥

【解析】

(1)根据求抛物线的对称轴和顶点坐标的公式可求出①求抛物线的对称轴;②求抛物线的顶点的纵坐标;(2)假设存在这样的a的值,使得AB=2.求得A(1,0),B(3,0),这两点不在函数图象上,假设不成立;(3)根据对称性,A,B两点介于(0,0)与(4,0)之间(含这两点).分两种情况①当a>0时,由题意,得②当a<0时,由题意,得,可分别求出a的取值范围.

解:(1)①对称轴为直线

②顶点的纵坐标为

(2)假设存在这样的a的值,使得AB=2.

由于抛物线的对称轴为直线A(1,0),B(3,0)

x=13时,ax2-4ax+3a-2=-2≠0,即点AB均不在抛物线上,

∴这样的a值不存在.

(3)根据对称性,A,B两点介于(0,0)与(4,0)之间(含这两点).

①当a>0时,由题意,得,解得a≥

②当a<0时,由题意,得,解得a<-2

综上,a<-2a≥

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.

(1)求二次函数y=ax2+2x+c的表达式;

(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;

(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y(2m+1)x+m3

(1)若函数图象经过原点,求m的值;

(2)若函数图象在y轴的截距为﹣2,求m的值;

(3)若函数的图象平行直线y3x3,求m的值;

(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x+bx+c y轴相交于点 A(0,3),与x正半轴相交于点B,对称轴是直线 x=1

(1)求此抛物线的解析式以及点B的坐标.

(2)动点M 从点 O 出发,以每秒2个单位长度的速度沿 x 轴正方向运动,同时动点 N 从点O出发,以每秒 3 个单位长度的速度沿y 轴正方向运动,当N点到达 A 点时,M、N同时停止运动.过动点 M x 轴的垂线交线段 AB 于点Q,交抛物线于点 P,设运动的时间为 t 秒.

t 为何值时,四边形 OMPN 为矩形.

t>0 时,△BOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)

关系:①ADBCAB=CD③∠A=C④∠B+C=180°.

已知:在四边形ABCD中,            

求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.

(1)若,判断是否为奇异三角形,并说明理由;

(2)若,求的长;

(3)如图2,在奇异三角形中,,点边上的中点,连结分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t1,B:1t1.5,C:1.5t2,D:t2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:

(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;

(2)本次抽样调查中,学习时间的中位数落在哪个等级内?

(3)表示B等级的扇形圆心角α的度数是多少?

(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次暑假旅游中,小亮在仙岛湖的游船上(A处),测得湖西岸的山峰太婆尖(C处)和湖东岸的山峰老君岭(D处)的仰角都是45°.游船向东航行100米后(B处),测得太婆尖,老君岭的仰角分别为30°,60°.试问太婆尖、老君岭的高度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰直角三角形ABC中,∠BAC=90°,BC=12,点M为BC中点,含45°的直角三角板的锐角顶点与M重合,当三角板绕点M旋转时,三角板与两直角边交于点P、Q.P、Q分别在AB、AC边上,设BP=x,CQ=y.

(1)求y与x的函数关系式;

(2)写出x的取值范围.

查看答案和解析>>

同步练习册答案