精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.

(1)求二次函数y=ax2+2x+c的表达式;

(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;

(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

【答案】(1)y=﹣x2+2x+3(2)()(3)当点P的坐标为()时,四边形ACPB的最大面积值为

【解析】

(1)根据待定系数法,可得函数解析式;

(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;

(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.

(1)将点B和点C的坐标代入函数解析式,得

解得

二次函数的解析式为y=﹣x2+2x+3;

(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,

如图1,连接PP′,则PECO,垂足为E,

C(0,3),

∴点P的纵坐标

时,即

解得(不合题意,舍),

∴点P的坐标为

(3)如图2,

P在抛物线上,设P(m,﹣m2+2m+3),

设直线BC的解析式为y=kx+b,

将点B和点C的坐标代入函数解析式,得

解得

直线BC的解析为y=﹣x+3,

设点Q的坐标为(m,﹣m+3),

PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.

y=0时,﹣x2+2x+3=0,

解得x1=﹣1,x2=3,

OA=1,

S四边形ABPC=SABC+SPCQ+SPBQ

m=时,四边形ABPC的面积最大.

m=时,,即P点的坐标为

当点P的坐标为时,四边形ACPB的最大面积值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面内的两条直线有相交和平行两种位置关系.

(1)如图1,若,点内部, ,求的度数.

(2)如图2,在ABCD的前提下,将点移到外部,则之间有何数量关系?请证明你的结论.

(3)如图3,写出之间的数量关系?(不需证明)

(4)如图4,求出的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形OABC在平面直角坐标系中的位置如图所示,已知,点Ax轴上,点Cy轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P,交x轴于点D.下列结论:①;②当点D运动到OA的中点处时,;③在运动过程中,是一个定值;④当△ODP为等腰三角形时,点D的坐标为.其中正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k0)的图象交于A(﹣1,a),B两点,与x轴交于点C.

(1)求此反比例函数的表达式;

(2)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(1)班数学老师将本班某次参加的数学竞赛成绩(得分取整数,满分100分)进行整理统计后,制成如下的频数直方图和扇形统计图,请根据统计图提供的信息,解答下列问题:

1)在分数段70.5~80.5分的频数、频率分别是多少?

2mn的值分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。

(1)如图1,若△ABC为直角三角形,求的值;

(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;

(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(

A.带①去B.带②去C.带③去D.带①和②去

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图,给出下列四个结论:①;②;③,④;其中正确结论是(

A. ①②③ B. ①③④ C. ②③④ D. ①②④

查看答案和解析>>

同步练习册答案